R/doFuture-package.R

#' doFuture: Foreach Parallel Adapter using Futures
#'
#' The \pkg{doFuture} package provides mechanisms for using the
#' **[foreach]** package together with the **[future]** package
#' such that `foreach()` parallelizes via _any_ future backend.
#'
#' @section Usage:
#' There are two alternative ways to use this package:
#'
#' 1. `y <- foreach(...) %dofuture% { ... }`
#' 2. `y <- foreach(...) %dopar% { ... }` with `registerDoFuture()`
#'
#' The _first alternative_ (recommended), which uses [`%dofuture%`], avoids
#' having to use `registerDoFuture()`.  The [`%dofuture%`] operator provides
#' a more consistent behavior than `%dopar%`, e.g. there is a unique set of
#' foreach arguments instead of one per possible adapter.  Identification
#' of globals, random number generation (RNG), and error handling is
#' handled by the future ecosystem, just like with other map-reduce
#' solutions such as **[future.apply]** and **[furrr]**.
#' An example is:
#'
#' ```r
#' library(doFuture)
#' plan(multisession)
#'
#' y <- foreach(x = 1:4, y = 1:10) %dofuture% {
#'   z <- x + y
#'   slow_sqrt(z)
#' }
#' ```
#'
#' This alternative is the recommended way to let `foreach()` parallelize
#' via the future framework if you start out from scratch.
#'
#' See [`%dofuture%`] for more details and examples on this approach.
#'
#'
#' The _second alternative_ is based on the traditional **foreach**
#' approach where one registers a foreach adapter to be used by `%dopar%`.
#' A popular adapter is `doParallel::registerDoParallel()`, which
#' parallelizes on the local machine using the **parallel** package.
#' This package provides `registerDoFuture()`, which parallelizes using
#' the **future** package, meaning any future-compliant parallel backend
#' can be used.
#' An example is:
#'
#' ```r
#' library(doFuture)
#' registerDoFuture()
#' plan(multisession)
#'
#' y <- foreach(x = 1:4, y = 1:10) %dopar% {
#'   z <- x + y
#'   slow_sqrt(z)
#' }
#' ```
#'
#' This alternative is useful if you already have a lot of R code that
#' uses `%dopar%` and you just want to switch to using the future
#' framework for parallelization.  Using `registerDoFuture()` is also
#' useful when you wish to use the future framework with packages and
#' functions that uses `foreach()` and `%dopar%` internally,
#' e.g. **[caret]**, **[plyr]**, **[NMF]**, and **[glmnet]**.  It can
#' also be used to configure the Bioconductor **[BiocParallel]** package,
#' and any package that rely on it, to parallelize via the future
#' framework.
#'
#' See [registerDoFuture()] for more details and examples on this approach.
#'
#'
#' [future.apply]: https://cran.r-project.org/package=future.apply
#' [furrr]: https://cran.r-project.org/package=furrr
#' [caret]: https://cran.r-project.org/package=caret
#' [plyr]: https://cran.r-project.org/package=plyr
#' [NMF]: https://cran.r-project.org/package=NMF
#' [glmnet]: https://cran.r-project.org/package=glmnet
#' [BiocParallel]: https://bioconductor.org/packages/BiocParallel/
#'
#' @docType package
#' @aliases doFuture-package
#' @name doFuture
NULL

Try the doFuture package in your browser

Any scripts or data that you put into this service are public.

doFuture documentation built on May 29, 2024, 10:26 a.m.