Nothing
#' doFuture: Foreach Parallel Adapter using Futures
#'
#' The \pkg{doFuture} package provides mechanisms for using the
#' **[foreach]** package together with the **[future]** package
#' such that `foreach()` parallelizes via _any_ future backend.
#'
#' @section Usage:
#' There are two alternative ways to use this package:
#'
#' 1. `y <- foreach(...) %dofuture% { ... }`
#' 2. `y <- foreach(...) %dopar% { ... }` with `registerDoFuture()`
#'
#' The _first alternative_ (recommended), which uses [`%dofuture%`], avoids
#' having to use `registerDoFuture()`. The [`%dofuture%`] operator provides
#' a more consistent behavior than `%dopar%`, e.g. there is a unique set of
#' foreach arguments instead of one per possible adapter. Identification
#' of globals, random number generation (RNG), and error handling is
#' handled by the future ecosystem, just like with other map-reduce
#' solutions such as **[future.apply]** and **[furrr]**.
#' An example is:
#'
#' ```r
#' library(doFuture)
#' plan(multisession)
#'
#' y <- foreach(x = 1:4, y = 1:10) %dofuture% {
#' z <- x + y
#' slow_sqrt(z)
#' }
#' ```
#'
#' This alternative is the recommended way to let `foreach()` parallelize
#' via the future framework if you start out from scratch.
#'
#' See [`%dofuture%`] for more details and examples on this approach.
#'
#'
#' The _second alternative_ is based on the traditional **foreach**
#' approach where one registers a foreach adapter to be used by `%dopar%`.
#' A popular adapter is `doParallel::registerDoParallel()`, which
#' parallelizes on the local machine using the **parallel** package.
#' This package provides `registerDoFuture()`, which parallelizes using
#' the **future** package, meaning any future-compliant parallel backend
#' can be used.
#' An example is:
#'
#' ```r
#' library(doFuture)
#' registerDoFuture()
#' plan(multisession)
#'
#' y <- foreach(x = 1:4, y = 1:10) %dopar% {
#' z <- x + y
#' slow_sqrt(z)
#' }
#' ```
#'
#' This alternative is useful if you already have a lot of R code that
#' uses `%dopar%` and you just want to switch to using the future
#' framework for parallelization. Using `registerDoFuture()` is also
#' useful when you wish to use the future framework with packages and
#' functions that uses `foreach()` and `%dopar%` internally,
#' e.g. **[caret]**, **[plyr]**, **[NMF]**, and **[glmnet]**. It can
#' also be used to configure the Bioconductor **[BiocParallel]** package,
#' and any package that rely on it, to parallelize via the future
#' framework.
#'
#' See [registerDoFuture()] for more details and examples on this approach.
#'
#'
#' [future.apply]: https://cran.r-project.org/package=future.apply
#' [furrr]: https://cran.r-project.org/package=furrr
#' [caret]: https://cran.r-project.org/package=caret
#' [plyr]: https://cran.r-project.org/package=plyr
#' [NMF]: https://cran.r-project.org/package=NMF
#' [glmnet]: https://cran.r-project.org/package=glmnet
#' [BiocParallel]: https://bioconductor.org/packages/BiocParallel/
#'
#' @docType package
#' @aliases doFuture-package
#' @name doFuture
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.