Nothing
# prior distribution for theta
#' Prior distribution for time-to-event outcomes
#'
#' If we do not assume the treatment effects to be fixed, i.e. `fixed = FALSE`,
#' the function `prior_tte` allows us to model the treatment effect following a prior distribution.
#' For more details concerning the definition of a prior distribution, see the \href{https://sterniii3.github.io/drugdevelopR/articles/Introduction-to-drugdevelopR.html}{vignette on priors}
#' as well as the \href{https://web.imbi.uni-heidelberg.de/prior/}{Shiny app}.
#'
#' @param x integration variable
#' @param w weight for mixture prior distribution
#' @param hr1 first assumed true treatment effect on HR scale for prior distribution
#' @param hr2 second assumed true treatment effect on HR scale for prior distribution
#' @param id1 amount of information for `hr1` in terms of number of events
#' @param id2 amount of information for `hr2` in terms of number of events
#' @return The output of the functions `Epgo_tte()` is the expected number of participants in phase III with conservative decision rule and sample size calculation.
#' @examples res <- prior_tte(x = 0.5, w = 0.5, hr1 = 0.69, hr2 = 0.88, id1 = 240, id2 = 420)
#' @export
#' @keywords internal
prior_tte<-function(x, w, hr1, hr2, id1, id2){
w * dnorm(x, -log(hr1), sqrt(4/id1)) +
(1 - w) * dnorm(x, -log(hr2), sqrt(4/id2))
}
# 10000 realizations of the prior distribution
box_tte<-function(w, hr1, hr2, id1, id2){
w * rnorm(1000000, -log(hr1),sqrt(4/id1)) +
(1 - w) * rnorm(1000000, -log(hr2), sqrt(4/id2))
}
# expected probability to go to phase III
#' Expected probability to go to phase III for time-to-event outcomes
#'
#' @param HRgo threshold value for the go/no-go decision rule
#' @param d2 total number of events for phase II; must be even number
#' @param w weight for mixture prior distribution
#' @param hr1 first assumed true treatment effect on HR scale for prior distribution
#' @param hr2 second assumed true treatment effect on HR scale for prior distribution
#' @param id1 amount of information for `hr1` in terms of number of events
#' @param id2 amount of information for `hr2` in terms of number of events
#' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect
#' @return The output of the functions `Epgo_tte()` is the expected probability to go to phase III.
#' @examples res <- Epgo_tte(HRgo = 0.8, d2 = 50,
#' w = 0.3, hr1 = 0.69, hr2 = 0.81,
#' id1 = 280, id2 = 420, fixed = FALSE)
#' @export
#' @keywords internal
Epgo_tte <- function(HRgo, d2, w, hr1, hr2, id1, id2, fixed){
if(!fixed){
return(
integrate(function(x){
sapply(x, function(x){
pnorm((log(HRgo) + x)/sqrt(4/d2))*
prior_tte(x, w, hr1, hr2, id1, id2)
})
}, - Inf, Inf)$value
)
}else{
return(
pnorm((log(HRgo) - log(hr1))/sqrt(4/d2))
)
}
}
# expected number of events for phase III
# in before phase II perspective
#' Expected sample size for phase III for time-to-event outcomes
#'
#' @param HRgo threshold value for the go/no-go decision rule
#' @param d2 total events for phase II; must be even number
#' @param alpha significance level
#' @param beta `1-beta` power for calculation of sample size for phase III
#' @param w weight for mixture prior distribution
#' @param hr1 first assumed true treatment effect on HR scale for prior distribution
#' @param hr2 second assumed true treatment effect on HR scale for prior distribution
#' @param id1 amount of information for `hr1` in terms of number of events
#' @param id2 amount of information for `hr2` in terms of number of events
#' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect
#' @return The output of the the functions `Ed3_tte` is the expected number of events in phase III.
#' @examples res <- Ed3_tte(HRgo = 0.8, d2 = 50,
#' alpha = 0.025, beta = 0.1, w = 0.3,
#' hr1 = 0.69, hr2 = 0.81,
#' id1 = 280, id2 = 420, fixed = FALSE)
#' @export
#' @keywords internal
Ed3_tte <- function(HRgo, d2, alpha, beta,
w, hr1, hr2, id1, id2, fixed){
if(!fixed){
return(
integrate(function(x){
sapply(x, function(x){
integrate(function(y){
((4*(qnorm(1-alpha)+qnorm(1-beta))^2)/(y^2))*
dnorm(y,
mean = x,
sd = sqrt(4/d2))*
prior_tte(x, w, hr1, hr2, id1, id2)
}, -log(HRgo), Inf)$value
})
}, - Inf, Inf)$value
)
}else{
return(
integrate(function(y){
((4*(qnorm(1-alpha)+qnorm(1-beta))^2)/(y^2))*
dnorm(y,
mean = -log(hr1),
sd = sqrt(4/d2))
}, -log(HRgo), Inf)$value
)
}
}
# expected probability of a successful program
#' Expected probability of a successful program for time-to-event outcomes
#'
#' @param HRgo threshold value for the go/no-go decision rule
#' @param d2 total events for phase II; must be even number
#' @param alpha significance level
#' @param beta `1-beta` power for calculation of sample size for phase III
#' @param step1 lower boundary for effect size
#' @param step2 upper boundary for effect size
#' @param w weight for mixture prior distribution
#' @param hr1 first assumed true treatment effect on HR scale for prior distribution
#' @param hr2 second assumed true treatment effect on HR scale for prior distribution
#' @param id1 amount of information for `hr1` in terms of number of events
#' @param id2 amount of information for `hr2` in terms of number of events
#' @param gamma difference in treatment effect due to different population structures in phase II and III
#' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect
#' @return The output of the functions `EPsProg_tte()` is the expected probability of a successful program.
#' @examples res <- EPsProg_tte(HRgo = 0.8, d2 = 50,
#' alpha = 0.025, beta = 0.1,
#' step1 = 1, step2 = 0.95,
#' w = 0.3, hr1 = 0.69, hr2 = 0.81,
#' id1 = 280, id2 = 420,
#' gamma = 0, fixed = FALSE)
#' @export
#' @keywords internal
EPsProg_tte <- function(HRgo, d2, alpha, beta,
step1, step2,
w, hr1, hr2, id1, id2,
gamma, fixed){
c = (qnorm(1 - alpha) + qnorm(1 - beta))^2
if(!fixed){
return(
integrate(function(x){
sapply(x, function(x){
integrate(function(y){
(pnorm(qnorm(1-alpha)-log(step2)/(sqrt(y^2/c)),
mean = (x+gamma)/(sqrt(y^2/c)),
sd = 1) -
pnorm(qnorm(1-alpha)-log(step1)/(sqrt(y^2/c)),
mean = (x+gamma)/(sqrt(y^2/c)),
sd = 1) )*
dnorm(y,
mean = x,
sd = sqrt(4/d2))*
prior_tte(x, w, hr1, hr2, id1, id2)
}, -log(HRgo), Inf)$value
})
}, - Inf, Inf)$value
)
}else{
return(
integrate(function(y){
(pnorm(qnorm(1-alpha)-log(step2)/(sqrt(y^2/c)),
mean = (-log(hr1)+gamma)/(sqrt(y^2/c)),
sd = 1) -
pnorm(qnorm(1-alpha)-log(step1)/(sqrt(y^2/c)),
mean = (-log(hr1)+gamma)/(sqrt(y^2/c)),
sd = 1))*
dnorm(y,
mean = -log(hr1),
sd = sqrt(4/d2))
}, - log(HRgo), Inf)$value
)
}
}
# utility function
#' Utility function for time-to-event outcomes.
#'
#' The utility function calculates the expected utility of our drug development program and is given as gains minus costs and depends on the parameters and the expected probability of a successful program.
#' The utility is in a further step maximized by the `optimal_tte()` function.
#' @param HRgo threshold value for the go/no-go decision rule
#' @param d2 total events for phase II; must be even number
#' @param alpha significance level
#' @param beta `1-beta` power for calculation of sample size for phase III
#' @param xi2 event rate for phase II
#' @param xi3 event rate for phase III
#' @param w weight for mixture prior distribution
#' @param hr1 first assumed true treatment effect on HR scale for prior distribution
#' @param hr2 second assumed true treatment effect on HR scale for prior distribution
#' @param id1 amount of information for `hr1` in terms of number of events
#' @param id2 amount of information for `hr2` in terms of number of events
#' @param c2 variable per-patient cost for phase II
#' @param c3 variable per-patient cost for phase III
#' @param c02 fixed cost for phase II
#' @param c03 fixed cost for phase III
#' @param K constraint on the costs of the program, default: Inf, e.g. no constraint
#' @param N constraint on the total expected sample size of the program, default: Inf, e.g. no constraint
#' @param S constraint on the expected probability of a successful program, default: -Inf, e.g. no constraint
#' @param steps1 lower boundary for effect size category `"small"` in RR scale, default: 1
#' @param stepm1 lower boundary for effect size category `"medium"` in RR scale = upper boundary for effect size category "small" in RR scale, default: 0.95
#' @param stepl1 lower boundary for effect size category `"large"` in RR scale = upper boundary for effect size category "medium" in RR scale, default: 0.85
#' @param b1 expected gain for effect size category `"small"`
#' @param b2 expected gain for effect size category `"medium"`
#' @param b3 expected gain for effect size category `"large"`
#' @param gamma difference in treatment effect due to different population structures in phase II and III
#' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect
#' @return The output of the functions `utility_tte()` is the expected utility of the program.
#' @examples res <- utility_tte(d2 = 50, HRgo = 0.8, w = 0.3,
#' hr1 = 0.69, hr2 = 0.81,
#' id1 = 280, id2 = 420, xi2 = 0.7, xi3 = 0.7,
#' alpha = 0.025, beta = 0.1,
#' c2 = 0.75, c3 = 1, c02 = 100, c03 = 150,
#' K = Inf, N = Inf, S = -Inf,
#' steps1 = 1, stepm1 = 0.95, stepl1 = 0.85,
#' b1 = 1000, b2 = 2000, b3 = 3000,
#' gamma = 0, fixed = TRUE)
#' @export
#' @keywords internal
utility_tte <- function(d2, HRgo, w, hr1, hr2, id1, id2,
alpha, beta, xi2, xi3,
c2, c3, c02, c03,
K, N, S,
steps1, stepm1, stepl1,
b1, b2, b3,
gamma, fixed){
steps2 <- stepm1
stepm2 <- stepl1
stepl2 <- 0
d3 <- Ed3_tte(HRgo = HRgo, d2 = d2, alpha = alpha,
beta = beta, w = w, hr1 = hr1, hr2 = hr2,
id1 = id1, id2 = id2, fixed = fixed)
# sample size is rounded up to next even natural number
n2 <- ceiling(d2*(1/xi2))
if(round(n2/2) != n2 / 2) {n2 <- n2 + 1}
n3 <- ceiling(d3 * (1/xi3))
if(round(n3/2) != n3 / 2) {n3 <- n3 + 1}
# expected number of events is rounded to natural number
d3 <- ceiling(d3)
if(n2+n3>N){
return(c(-9999, -9999, -9999, -9999, -9999, -9999,
-9999, -9999, -9999, -9999, -9999))
}else{
pg <- Epgo_tte(HRgo = HRgo, d2 = d2,
w = w, hr1 = hr1, hr2 = hr2,
id1 = id1, id2 = id2,
fixed = fixed)
K2 <- c02 + c2 * n2 # cost phase II
K3 <- c03 * pg + c3 * n3 # cost phase III
if(K2+K3>K){
return(c(-9999, -9999, -9999, -9999, -9999, -9999,
-9999, -9999, -9999, -9999, -9999))
}else{
# probability of a successful program:
# small, medium and large effect size
prob1 <- EPsProg_tte(HRgo = HRgo, d2 = d2,
alpha = alpha, beta = beta,
step1 = steps1, step2 = steps2,
w = w, hr1 = hr1, hr2 = hr2,
id1 = id1, id2 = id2,
gamma = gamma, fixed = fixed)
prob2 <- EPsProg_tte(HRgo = HRgo, d2 = d2,
alpha = alpha, beta = beta,
step1 = stepm1, step2 = stepm2,
w = w, hr1 = hr1, hr2 = hr2,
id1 = id1, id2 = id2,
gamma = gamma, fixed = fixed)
prob3 <- EPsProg_tte(HRgo = HRgo, d2 = d2,
alpha = alpha, beta = beta,
step1 = stepl1, step2 = stepl2,
w = w, hr1 = hr1, hr2 = hr2,
id1 = id1, id2 = id2,
gamma = gamma, fixed = fixed)
SP <- prob1 + prob2 + prob3
if(SP<S){
return(c(-9999, -9999, -9999, -9999, -9999,
-9999, -9999, -9999, -9999, -9999, -9999))
}else{
G <- b1 * prob1 + b2 * prob2 + b3 * prob3
EU <- - K2 - K3 + G
return(
c(EU, d3, SP, pg, K2, K3, prob1, prob2, prob3, n2, n3)
)
}
}
}
}
#################
# skip phase II #
#################
# number of events for phase III based on median_prior
#' Expected probability to go to phase III for time-to-event outcomes
#'
#' If choosing `skipII = TRUE`, the program calculates the expected utility for the case when phase
#' II is skipped and compares it to the situation when phase II is not skipped.
#' This function calculates the expected sample size for phase III for time-to-event outcomes using a median prior.
#' @param alpha significance level
#' @param beta `1-beta` power for calculation of sample size for phase III
#' @param median_prior the median_prior is given as -log(hr1), the assumed true treatment effect
#' @return The output of the functions `d3_skipII_tte()` is the expected number of events in phase III when skipping phase II.
#' @examples res <- d3_skipII_tte(alpha = 0.05, beta = 0.1, median_prior = 0.35)
#' @export
#' @keywords internal
d3_skipII_tte <-function(alpha, beta, median_prior){
return(
(4*(qnorm(1-alpha)+qnorm(1-beta))^2)/(median_prior^2)
)
}
# expected probability of a successful program
# based on median_prior
EPsProg_skipII_tte <-function(alpha, beta, step1, step2,
median_prior, w, hr1, hr2,
id1, id2, gamma, fixed){
c=(qnorm(1-alpha)+qnorm(1-beta))^2
if(!fixed){
return(
integrate(function(x){
sapply(x,function(x){
(pnorm(qnorm(1-alpha)-
log(step2)/(sqrt(median_prior^2/c)),
mean=(x+gamma)/(sqrt(median_prior^2/c)),
sd=1)-
pnorm(qnorm(1-alpha)-
log(step1)/(sqrt(median_prior^2/c)),
mean=(x+gamma)/(sqrt(median_prior^2/c)),
sd=1))*
prior_tte(x, w, hr1, hr2, id1, id2)
})
}, -Inf, Inf)$value
)
}else{
return(
pnorm(qnorm(1-alpha)-
log(step2)/(sqrt(median_prior^2/c)),
mean=(-log(hr1)+gamma)/(sqrt(median_prior^2/c)),
sd=1)-
pnorm(qnorm(1-alpha)-
log(step1)/(sqrt(median_prior^2/c)),
mean=(-log(hr1)+gamma)/(sqrt(median_prior^2/c)),
sd=1)
)
}
}
#utility function
utility_skipII_tte <-function(alpha, beta, xi3, c03, c3,
b1, b2, b3, median_prior,
K, N, S,
steps1, stepm1, stepl1,
w, hr1, hr2, id1, id2,
gamma, fixed){
steps2 <- stepm1
stepm2 <- stepl1
stepl2 <- 0
d3 <- d3_skipII_tte(alpha = alpha, beta = beta,
median_prior = median_prior)
n3 <- ceiling(d3*(1/xi3))
if(round(n3/2) != n3 / 2) {n3 = n3 + 1}
d3 <- ceiling(d3)
if(n3>N){
return(c(-9999, -9999, -9999, -9999,
-9999, -9999, -9999, -9999))
}else{
K2 <- 0
K3 <- c03 + c3*n3
if(K2+K3>K){
return(c(-9999, -9999, -9999, -9999,
-9999, -9999, -9999, -9999))
}else{
# probability of a successful program:
# small, medium, large effect size
prob1 <- EPsProg_skipII_tte(alpha = alpha, beta = beta,
step1 = steps1,
step2 = steps2,
median_prior = median_prior,
w = w, hr1 = hr1, hr2 = hr2,
id1 = id1, id2 = id2,
gamma = gamma, fixed = fixed)
prob2 <- EPsProg_skipII_tte(alpha = alpha, beta = beta,
step1 = stepm1,
step2 = stepm2,
median_prior = median_prior,
w = w, hr1 = hr1, hr2 = hr2,
id1 = id1, id2 = id2,
gamma = gamma, fixed = fixed)
prob3 <- EPsProg_skipII_tte(alpha = alpha, beta = beta,
step1 = stepl1,
step2 = stepl2,
median_prior = median_prior,
w = w, hr1 = hr1, hr2 = hr2,
id1 = id1, id2 = id2,
gamma = gamma, fixed = fixed)
SP <- prob1 + prob2 + prob3
if(SP<S){
return(c(-9999, -9999, -9999, -9999,
-9999, -9999, -9999, -9999))
}else{
G <- b1 * prob1 + b2 * prob2 + b3 * prob3
EU <- - K2 - K3 + G
return(
c(EU, d3, n3, SP, K3, prob1, prob2, prob3)
)
}
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.