Nothing
#'
#' @title Computes the variance of vector
#' @description Calculates the variance.
#' @details if the length of input vector is less than the set filter
#' a missing value is returned.
#' @param xvect a vector
#' @return a list, with the sum of the input variable, the sum of squares of the input variable,
#' the number of missing values, the number of valid values, the number of total length of the
#' variable, and a study message indicating whether the number of valid is less than the
#' disclosure threshold
#' @author Amadou Gaye, Demetris Avraam, for DataSHIELD Development Team
#' @export
#'
varDS <- function(xvect){
#############################################################
# MODULE 1: CAPTURE THE nfilter SETTINGS
thr <- dsBase::listDisclosureSettingsDS()
nfilter.tab <- as.numeric(thr$nfilter.tab)
#nfilter.glm <- as.numeric(thr$nfilter.glm)
#nfilter.subset <- as.numeric(thr$nfilter.subset)
#nfilter.string <- as.numeric(thr$nfilter.string)
#############################################################
out.sum <- sum(xvect, na.rm=TRUE)
out.sumSquares <- sum(xvect^2, na.rm=TRUE)
out.numNa <- length(which(is.na(xvect)))
out.totN <- length(xvect)
out.validN <- out.totN-out.numNa
studysideMessage <- "VALID ANALYSIS"
if((out.validN != 0) && (out.validN < nfilter.tab)){
out.sum <- NA
out.sumSquares <- NA
studysideMessage <- "FAILED: Nvalid less than nfilter.tab"
stop(studysideMessage, call. = FALSE)
}
out.obj <- list(Sum=out.sum,SumOfSquares=out.sumSquares,Nmissing=out.numNa,Nvalid=out.validN,Ntotal=out.totN,ValidityMessage=studysideMessage)
return(out.obj)
}
#AGGREGATE FUNCTION
# varDS
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.