Nothing
# context("dscore_sem")
#
# ## D-score - test equivalence of dscore and logit metric
# data <- data.frame(
# age = rep(round(21 / 365.25, 4), 10),
# ddifmd001 = c(NA, NA, 0, 0, 0, 1, 0, 1, 1, 1),
# ddicmm029 = c(NA, NA, NA, 0, 1, 0, 1, 0, 1, 1),
# ddigmd053 = c(NA, 0, 0, 1, 0, 0, 1, 1, 0, 1)
# )
# my_itembank <- data.frame(
# key = "mykey",
# item = items,
# tau = get_tau(items = items, key = "dutch")
# )
# my_reference <- builtin_references[builtin_references$key == "dutch", ]
# my_reference$key <- "mykey"
#
# # externally specified transformation
# # transform <- c(0, 1)
# # transform <- c(0, 2)
# transform <- c(50, 3)
# qp <- -10:100
#
# algorithm <- "1.8.7"
# algorithm <- "current"
# zd <- dscore(data,
# items = items, dec = 4, metric = "dscore",
# itembank = my_itembank, transform = transform, qp = qp,
# key = "mykey", population = "dutch",
# algorithm = algorithm,
# verbose = TRUE
# )
# zl <- dscore(data,
# items = items, dec = 4, metric = "logit",
# itembank = my_itembank, key = "mykey", transform = transform, qp = qp,
# algorithm = algorithm
# )
#
# lastkey <- builtin_keys[nrow(builtin_keys), ]
# transform <- c(lastkey$intercept, lastkey$slope)
# algorithm <- "1.8.7"
# zd <- dscore(data, metric = "dscore", algorithm = algorithm, verbose = FALSE)
# zl <- dscore(data, metric = "logit", algorithm = algorithm)
# test_that("logit and dscore are identical (1.8.7)", {
# expect_equal(zl$d, (zd$d - transform[1]) / transform[2], tolerance = 0.001)
# expect_equal(zl$d * transform[2] + transform[1], zd$d, tolerance = 0.001)
# })
#
# algorithm <- "current"
# zd <- dscore(data, metric = "dscore", algorithm = algorithm, verbose = FALSE)
# zl <- dscore(data, metric = "logit", algorithm = algorithm)
# test_that("logit and dscore are identical (current)", {
# expect_equal(zl$d, (zd$d - transform[1]) / transform[2], tolerance = 0.001)
# expect_equal(zl$d * transform[2] + transform[1], zd$d, tolerance = 0.001)
# })
#
# # check prior mean as column in data
# data <- cbind(data, start = rep(c(0, 10), times = 5))
# zp0 <- dscore(data)
# zp1 <- dscore(data, prior_mean = "start")
# test_that("D-score difference at uneven rows (with start 0) is higher than on uneven rows (with start 10)", {
# expect_gt(zp0$d[3] - zp1$d[3], zp0$d[4] - zp1$d[4])
# expect_gt(zp0$d[5] - zp1$d[5], zp0$d[6] - zp1$d[6])
# expect_gt(zp0$d[7] - zp1$d[7], zp0$d[8] - zp1$d[8])
# expect_gt(zp0$d[9] - zp1$d[9], zp0$d[10] - zp1$d[10])
# })
#
# test_that("count_mu_phase() handles missing ages", {
# expect_silent(dscore::count_mu(t = c(NA, NA),
# key = "preliminary_standards",
# prior_mean_NA = 50))
# expect_silent(dscore::count_mu(t = c(NA, -3, 1:3, NA),
# key = "preliminary_standards",
# prior_mean_NA = 50))
# })
#
#
# # test empty score vector
# scores <- structure(
# list(
# age = 0, ddifmd001 = NA_integer_, ddifmd002 = NA_real_,
# ddifmd003 = NA_real_, ddifmm004 = NA_integer_, ddifmd005 = NA_integer_,
# ddigmd006 = NA_real_, ddifmd007 = NA_integer_, ddifmd008 = NA_integer_,
# ddifmm009 = NA_real_, ddifmd010 = NA_real_, ddifmd011 = NA_real_,
# ddifmm012 = NA_integer_, ddifmd013 = NA_real_, ddifmm014 = NA_integer_,
# ddifmd015 = NA_real_, ddifmm016 = NA_integer_, ddifmd017 = NA_integer_,
# ddifmd018 = NA_integer_, ddifmm019 = NA_integer_, ddifmd020 = NA_integer_,
# ddifmd021 = NA_integer_, ddifmd022 = NA_integer_, ddifmd023 = NA_integer_,
# ddifmd024 = NA_integer_, ddifmm025 = NA_integer_, ddifmd026 = NA_integer_,
# ddifmd027 = NA_integer_, ddifmd028 = NA_integer_, ddicmm029 = NA_integer_,
# ddicmm030 = NA_integer_, ddicmm031 = NA_integer_, ddicmm032 = NA_integer_,
# ddicmm033 = NA_integer_, ddicmm034 = NA_integer_, ddicmm035 = NA_integer_,
# ddicmm036 = NA_integer_, ddicmm037 = NA_integer_, ddicmm038 = NA_integer_,
# ddicmm039 = NA_integer_, ddicmm040 = NA_integer_, ddicmm041 = NA_integer_,
# ddicmm042 = NA_integer_, ddicmm043 = NA_integer_, ddicmd044 = NA_integer_,
# ddicmm045 = NA_integer_, ddicmm046 = NA_integer_, ddicmm047 = NA_integer_,
# ddicmm048 = NA_integer_, ddicmd049 = NA_integer_, ddicmm050 = NA_integer_,
# ddicmm051 = NA_integer_, ddigmd052 = NA_real_, ddigmd053 = NA_real_,
# ddigmd054 = NA_integer_, ddigmd155 = NA_real_, ddigmd255 = NA_real_,
# ddigmd355 = NA_real_, ddigmd055 = NA_real_, ddigmd056 = NA_integer_,
# ddigmd057 = NA_integer_, ddigmd058 = NA_integer_, ddigmd059 = NA_real_,
# ddigmm060 = NA_integer_, ddigmd061 = NA_integer_, ddigmd062 = NA_integer_,
# ddigmd063 = NA_integer_, ddigmm064 = NA_integer_, ddigmm065 = NA_integer_,
# ddigmm066 = NA_integer_, ddigmm067 = NA_integer_, ddigmd068 = NA_real_,
# ddigmd168 = NA_real_, ddigmd268 = NA_real_, ddigmd069 = NA_integer_,
# ddigmd070 = NA_integer_, ddigmd071 = NA_real_, ddigmd072 = NA_integer_,
# ddigmm073 = NA_integer_, ddigmd074 = NA_integer_, ddigmd075 = NA_real_
# ),
# class = "data.frame", row.names = c(NA, -1L)
# )
#
# test_that("empty vector works with all keys", {
# expect_silent(dscore(scores, key = "dutch"))
# expect_silent(dscore(scores, key = "gcdg"))
# expect_silent(dscore(scores, key = "gsed"))
# })
#
# # Variables to append
# n <- nrow(data)
# ids <- data.frame(
# id_chr = LETTERS[1:n],
# id_num = 128 + 1:n,
# a = NA_real_,
# d = rnorm(n)
# )
# data2 <- data.frame(ids, data)
#
# test_that("prepend attaches two ID columns", {
# expect_equal(ncol(dscore(data2, prepend = c("id_chr", "id_num"))), 2 + 6)
# })
# test_that("unknown variables names produce notfound warning", {
# expect_warning(dscore(data2, prepend = c("idonotexist")), "Not found: idonotexist")
# })
# test_that("reserved names produce overwrite warning", {
# expect_warning(dscore(data2, prepend = c("a", "d")))
# })
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.