Nothing
#' @title Calculate conditional AIC
#'
#' @description
#' Calculates the conditional Akaike Information criterion (cAIC).
#'
#' @param object Output from \code{\link{dsem}}
#' @param what Whether to return the cAIC or the effective degrees of freedom
#' (EDF) for each group of random effects.
#'
#' @details
#' cAIC is designed to optimize the expected out-of-sample predictive
#' performance for new data that share the same random effects as the
#' in-sample (fitted) data, e.g., spatial interpolation. In this sense,
#' it should be a fast approximation to optimizing the model structure
#' based on k-fold crossvalidation.
#' By contrast, \code{AIC} calculates the
#' marginal Akaike Information Criterion, which is designed to optimize
#' expected predictive performance for new data that have new random effects,
#' e.g., extrapolation, or inference about generative parameters.
#'
#' cAIC also calculates as a byproduct the effective degrees of freedom,
#' i.e., the number of fixed effects that would have an equivalent impact on
#' model flexibility as a given random effect.
#'
#' Both cAIC and EDF are calculated using Eq. 6 of Zheng Cadigan Thorson 2024.
#'
#' Note that, for models that include profiled fixed effects, these profiles
#' are turned off.
#'
#' @return
#' Either the cAIC, or the effective degrees of freedom (EDF) by group
#' of random effects
#'
#' @references
#'
#' **Deriving the general approximation to cAIC used here**
#'
#' Zheng, N., Cadigan, N., & Thorson, J. T. (2024).
#' A note on numerical evaluation of conditional Akaike information for
#' nonlinear mixed-effects models (arXiv:2411.14185). arXiv.
#' \doi{10.48550/arXiv.2411.14185}
#'
#' **The utility of EDF to diagnose hierarchical model behavior**
#'
#' Thorson, J. T. (2024). Measuring complexity for hierarchical
#' models using effective degrees of freedom. Ecology,
#' 105(7), e4327 \doi{10.1002/ecy.4327}
#'
#' @export
cAIC <-
function( object,
what = c("cAIC","EDF") ){
what = match.arg(what)
data = object$tmb_inputs$data
# Error checks
if(any(is.na(object$tmb_inputs$map$x_tj))){
stop("cAIC is not implemented when fixing states at data using family=`fixed`")
}
# Turn on all GMRF parameters
map = object$tmb_inputs$map
map$x_tj = factor(seq_len(prod(dim(data$y_tj))))
# Make sure profile = NULL
#if( is.null(object$internal$control$profile) ){
obj = object$obj
#}else{
obj = TMB::MakeADFun( data = data,
parameters = object$internal$parhat,
random = object$tmb_inputs$random,
map = map,
profile = NULL,
DLL="dsem",
silent = TRUE )
#}
# Weights = 0 is equivalent to data = NA
data$y_tj[] = NA
# Make obj_new
obj_new = TMB::MakeADFun( data = data,
parameters = object$internal$parhat,
map = map,
random = object$tmb_inputs$random,
DLL = "dsem",
profile = NULL )
#
par = obj$env$parList()
parDataMode <- obj$env$last.par
indx = obj$env$lrandom()
q = sum(indx)
p = length(object$opt$par)
## use - for Hess because model returns negative loglikelihood;
Hess_new = -Matrix::Matrix(obj_new$env$f(parDataMode,order=1,type="ADGrad"),sparse = TRUE)
#cov_Psi_inv = -Hess_new[indx,indx]; ## this is the marginal prec mat of REs;
Hess_new = Hess_new[indx,indx]
## Joint hessian etc
Hess = -Matrix::Matrix(obj$env$f(parDataMode,order=1,type="ADGrad"),sparse = TRUE)
Hess = Hess[indx,indx]
#negEDF = diag(as.matrix(solve(ddlj.r)) %*% ddlr.r)
negEDF = Matrix::diag(Matrix::solve(Hess, Hess_new))
#
if(what=="cAIC"){
jnll = obj$env$f(parDataMode)
cnll = jnll - obj_new$env$f(parDataMode)
cAIC = 2*cnll + 2*(p+q) - 2*sum(negEDF)
return(cAIC)
}
if(what=="EDF"){
#Sdims = object$tmb_inputs$tmb_data$Sdims
#group = rep.int( seq_along(Sdims), times=Sdims )
#names(negEDF) = names(obj$env$last.par)[indx]
EDF = length(negEDF) - sum(negEDF)
return(EDF)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.