Nothing
## ----setup, echo=FALSE, cache=FALSE-------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
echo = FALSE,
error = FALSE,
message = FALSE,
warning = FALSE
)
# Install locally
# devtools::install_local( R'(C:\Users\James.Thorson\Desktop\Git\dsem)', force=TRUE )
# Build and PDF
# setwd(R'(C:\Users\James.Thorson\Desktop\Git\dsem)'); devtools::build_rmd("vignettes/model-description.Rmd"); rmarkdown::render( "vignettes/model-description.Rmd", rmarkdown::pdf_document())
#
# Recommended workflow:
# * Open in Rstudio and knit using button there
## ----echo=TRUE, eval=FALSE----------------------------------------------------
# x -> x, 1, ar1
# x <-> x, 0, sd
## ----echo=TRUE, eval=FALSE----------------------------------------------------
# A -> B, 0, b_AB
# B -> C, 1, b_BC
## ----echo=TRUE, eval=TRUE-----------------------------------------------------
dsem = "
x -> x, 1, ar1, 0.8
x <-> x, 0, sd, 1
"
## ----echo=TRUE, eval=TRUE-----------------------------------------------------
# Load package
library(dsem)
# call dsem without estimating parameters
out = dsem(
tsdata = ts(data.frame( x = rep(1,10) )),
sem = dsem,
control = dsem_control(
run_model = FALSE,
quiet = TRUE
)
)
# Extract covariance
Sigma1 = solve(as.matrix(out$obj$report()$Q_kk))
plot( x=1:10, y = diag(Sigma1), xlab="time",
ylab="Marginal variance", type="l",
ylim = c(0,max(diag(Sigma1))))
## ----echo=TRUE, eval=TRUE-----------------------------------------------------
# call dsem without estimating parameters
out = dsem(
tsdata = ts(data.frame( x = rep(1,10) )),
sem = dsem,
control = dsem_control(
run_model = FALSE,
quiet = TRUE,
constant_variance = "marginal"
)
)
# Extract covariance
Sigma2 = solve(as.matrix(out$obj$report()$Q_kk))
plot( x=1:10, y = diag(Sigma2), xlab="time",
ylab="Marginal variance", type="l",
ylim = c(0,max(diag(Sigma1))))
## ----echo=TRUE, eval=TRUE-----------------------------------------------------
#
dsem = "
# Factor follows random walk with unit variance
F <-> F, 0, NA, 1
F -> F, 1, NA, 1
# Loadings on two manifest variables
F -> x, 0, b_x, 1
F -> y, 0, b_y, 1
# No residual variance for manifest variables
x <-> x, 0, NA, 0
y <-> y, 0, NA, 0
"
data = data.frame(
x = rnorm(10),
y = rnorm(10),
F = rep(NA,10)
)
# call dsem without estimating parameters
out = dsem(
tsdata = ts(data),
sem = dsem,
family = c("normal","normal","fixed"),
control = dsem_control(
run_model = FALSE,
quiet = TRUE,
gmrf_parameterization = "projection"
)
)
## ----echo=TRUE, eval=TRUE-----------------------------------------------------
# Extract covariance
library(Matrix)
IminusRho_kk = out$obj$report()$IminusRho_kk
G_kk = out$obj$report()$Gamma_kk
Q_kk = t(IminusRho_kk) %*% t(G_kk) %*% G_kk %*% IminusRho_kk
# Display eigenvalues
eigen(Q_kk)$values
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.