Nothing
test_that("dsem example is working ", {
#skip_on_ci()
data(KleinI, package="AER")
TS = ts(data.frame(KleinI, "time"=time(KleinI) - 1931))
# Specify by declaring each arrow and lag
sem = "
# Link, lag, param_name
cprofits -> consumption, 0, a1
cprofits -> consumption, 1, a2
pwage -> consumption, 0, a3
gwage -> consumption, 0, a3
cprofits -> invest, 0, b1
cprofits -> invest, 1, b2
capital -> invest, 0, b3
gnp -> pwage, 0, c2
gnp -> pwage, 1, c3
time -> pwage, 0, c1
"
tsdata = TS[,c("time","gnp","pwage","cprofits",'consumption',
"gwage","invest","capital")]
# Fit model
fit = dsem( sem=sem,
tsdata=tsdata,
control = dsem_control(getJointPrecision=TRUE) )
# Check objective function
expect_equal( as.numeric(fit$opt$obj), 431.6122, tolerance=1e-2 )
#
fitRTMB = dsemRTMB( sem=sem,
tsdata=tsdata,
control = dsem_control(getsd=FALSE) )
# Check objective function
expect_equal( as.numeric(fit$opt$obj), as.numeric(fitRTMB$opt$obj), tolerance=1e-2 )
# Convert and plot using phylopath
as_fitted_DAG(fit)
# Various other utilities
plot(fit)
vcov(fit, which="fixed")
vcov(fit, which="random")
vcov(fit, which="both")
print(fit)
logLik(fit)
total_effect(fit)
as_sem(fit)
predict(fit, type="link")
predict(fit, type="response")
predict(fit, type="link", newdata=tsdata)
simulate(fit, variance = "none")
simulate(fit, variance = "random")
simulate(fit, variance = "both")
simulate(fit, resimulate_gmrf=TRUE)
# Refit with measurement errors .. ignore quality of fit, just checking that it runs
fit1 = dsem( sem=sem,
tsdata = tsdata,
family = c("normal","gamma",rep("fixed",ncol(tsdata)-2)),
control = dsem_control(getsd=FALSE,
extra_convergence_checks = FALSE,
newton_loops=0) )
residuals(fit1, type="deviance")
residuals(fit1, type="response")
# Test equations including lags, starting values, and mirrored params
equations = "
consumption = a1(0.1)*cprofits + a2(0.1)*lag[cprofits,1]+ a3(0.1)*pwage + a3(0.2)*gwage
invest = b1*cprofits + b2*lag[cprofits,1] + b3*capital
pwage = c1*time + c2*gnp + c3*lag[gnp,1]
"
sem_equations = convert_equations(equations)
# Fit model
fit_equations = dsem( sem=sem_equations,
tsdata=tsdata,
control = dsem_control(getsd=FALSE) )
# Check objective function
expect_equal( as.numeric(fit$opt$obj), as.numeric(fit_equations$opt$obj), tolerance=1e-2 )
})
test_that("dsem adds variances ", {
data(isle_royale)
data = ts( log(isle_royale[,2:3]), start=1959)
sem = "
wolves <-> wolves, 0, sd1
moose <-> moose, 0, sd2
"
# initial first without delta0 (to improve starting values)
fit1 = dsem( sem = "",
tsdata = data )
# initial first without delta0 (to improve starting values)
fit2 = dsem( sem = sem,
tsdata = data )
# Check objective function
expect_equal( as.numeric(fit1$opt$obj), as.numeric(fit2$opt$obj), tolerance=1e-2 )
})
test_that("dsem works with fixed variances ", {
data(isle_royale)
data = ts( log(isle_royale[,2:3]), start=1959)
# initial first without delta0 (to improve starting values)
sem = "
wolves <-> wolves, 0, sd1
moose <-> moose, 0, sd2
wolves -> wolves, 1, rho1
moose -> moose, 1, rho2
"
fit1 = dsem( sem = sem,
tsdata = data )
# initial first without delta0 (to improve starting values)
sem = "
wolves <-> wolves, 0, NA, 0.3732812
moose <-> moose, 0, NA, 0.1911209
wolves -> wolves, 1, NA, 0.8558536
moose -> moose, 1, NA, 0.9926087
"
fit2 = dsem( sem = sem,
tsdata = data,
family = c("normal", "normal") )
# initial first without delta0 (to improve starting values)
sem = "
wolves <-> wolves, 0, NA, 0.3732812
moose <-> moose, 0, NA, 0.1911209
wolves -> wolves, 1, NA, 0.8558536
moose -> moose, 1, NA, 0.9926087
"
fit3 = dsemRTMB( sem = sem,
tsdata = data,
family = c("normal", "normal") )
# Check objective function
expect_equal( as.numeric(fit1$opt$obj), as.numeric(fit2$opt$obj), tolerance=1e-2 )
expect_equal( as.numeric(fit1$opt$obj), as.numeric(fit3$opt$obj), tolerance=1e-2 )
})
test_that("bering sea example is stable ", {
data(bering_sea)
#
Z = ts( bering_sea )
family = rep( "fixed", ncol(bering_sea) )
# Specify model
sem = "
log_seaice -> log_CP, 0, seaice_to_CP
log_CP -> log_Cfall, 0, CP_to_Cfall
log_CP -> log_Esummer, 0, CP_to_E
log_PercentEuph -> log_RperS, 0, Seuph_to_RperS
log_PercentCop -> log_RperS, 0, Scop_to_RperS
log_Esummer -> log_PercentEuph, 0, Esummer_to_Suph
log_Cfall -> log_PercentCop, 0, Cfall_to_Scop
SSB -> log_RperS, 0, SSB_to_RperS
log_seaice -> log_seaice, 1, AR1, 0.001
log_CP -> log_CP, 1, AR2, 0.001
log_Cfall -> log_Cfall, 1, AR4, 0.001
log_Esummer -> log_Esummer, 1, AR5, 0.001
SSB -> SSB, 1, AR6, 0.001
log_RperS -> log_RperS, 1, AR7, 0.001
log_PercentEuph -> log_PercentEuph, 1, AR8, 0.001
log_PercentCop -> log_PercentCop, 1, AR9, 0.001
"
# Run model
fit = dsem( sem=sem,
tsdata=Z,
family=family,
control = dsem_control(use_REML=FALSE) )
# Check objective function
expect_equal( as.numeric(fit$opt$obj), 189.3005, tolerance=1e-2 )
})
test_that("Fixing parameters works ", {
sem = "
A -> B, 0, NA, 1
B -> C, 0, NA, 0.5
# Extra links
A -> D, 1, beta
B -> D, 1, beta
"
set.seed(101)
nobs = 40
A = rnorm(nobs)
B = A + rnorm(nobs)
C = 0.5 * B + rnorm(nobs)
D = rnorm(nobs)
tsdata = ts(cbind(A=A, B=B, C=C, D=D))
# Run models
fit = dsem( sem=sem,
tsdata=tsdata,
control = dsem_control(getsd=FALSE) )
fitRTMB = dsemRTMB( sem=sem,
tsdata=tsdata,
control = dsem_control(getsd=FALSE) )
# Check objective function
expect_equal( as.numeric(fit$opt$obj), 224.2993, tolerance=1e-2 )
expect_equal( as.numeric(fit$opt$obj), as.numeric(fitRTMB$opt$obj), tolerance=1e-2 )
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.