Nothing
# get_thetas_for_init_grid_dynWEV <- function(init_grid, df, nRatings, simult_conf, fixed) {
# nConds <- length(unique(df$condition))
# conf_probs <- cumsum(table(df$rating))
# conf_probs <- conf_probs[1:(nRatings-1)]/conf_probs[nRatings]
# df$correct <- as.numeric(df$stimulus == df$response)
# MRT <- aggregate(rt~condition+correct, df, mean) %>%
# full_join(expand.grid(condition=levels(df$condition), correct=c(0,1))) %>%
# mutate(rt = ifelse(is.na(rt), 0, rt))
# p_corrects <- aggregate(correct~condition, df, mean)[['correct']]
#
# if (!("t0" %in% names(fixed))) init_grid['t0'] <- init_grid['t0']*mint0
#
#
# get_start_thetas <- function(paramRow) {
#
# paramRow <- c(paramRow, unlist(fixed, use.names = TRUE))
# if (simult_conf & !("tau" %in% names(fixed))) {
# paramRow['tau'] <- paramRow['tau']*(mint0-paramRow['t0'])
# }
# V <- c(t(paramRow[paste("v", 1:nConds, sep="")]))
# MRT_corr <- pmax(0,(filter(MRT, .data$correct==1)$rt-paramRow['t0']-paramRow['st0']/2))
# MRT_false <- pmax(0,(filter(MRT, .data$correct==0)$rt-paramRow['t0']-paramRow['st0']/2))
#
# if (simult_conf) {
# MRT_corr <- pmax(0,MRT_corr -paramRow['tau'])
# MRT_false <- pmax(0,MRT_false -paramRow['tau'])
# }
#
# MRT_corr_ttau <- MRT_corr + paramRow[['tau']]
# MRT_false_ttau <- MRT_false + paramRow[['tau']]
#
#
# Mconf_false = (-paramRow[['w']]*
# (paramRow[['tau']]*V-paramRow[['a']]*paramRow[['z']]*(paramRow[['sv']]^2*MRT_false_ttau+1))/(1+paramRow[['sv']]^2*MRT_false)+
# (1-paramRow[['w']])*MRT_false_ttau*V) / MRT_false_ttau^paramRow[['lambda']]
#
# Mconf_corr = (-paramRow[['w']]*
# (-paramRow[['tau']]*V-paramRow[['a']]*(1-paramRow[['z']])*(paramRow[['sv']]^2*MRT_corr_ttau+1))/(1+paramRow[['sv']]^2*MRT_corr)+
# (1-paramRow[['w']])*MRT_corr_ttau*V) / MRT_corr_ttau^paramRow[['lambda']]
#
# VRconf_false = (paramRow[['w']]^2*
# (paramRow[['tau']] +
# (paramRow[['sv']]^2*paramRow[['tau']]^2)/
# (1+paramRow[['sv']]^2*MRT_false)) +
# ((1-paramRow[['w']])^2*
# (paramRow[['svis']]^2*MRT_false_ttau + MRT_false_ttau^2 * paramRow[['sigvis']]^2)))/MRT_false_ttau^(2*paramRow[['lambda']])
#
# VRconf_corr = (paramRow[['w']]^2*
# (paramRow[['tau']] +
# (paramRow[['sv']]^2*paramRow[['tau']]^2)/
# (1+paramRow[['sv']]^2*MRT_corr)) +
# ((1-paramRow[['w']])^2*
# (paramRow[['svis']]^2*MRT_corr_ttau + MRT_corr_ttau^2 * paramRow[['sigvis']]^2)))/MRT_corr_ttau^(2*paramRow[['lambda']])
# if (any(is.na(Mconf_corr))||any(is.na(Mconf_false))||any(is.na(VRconf_corr))||any(is.na(VRconf_false))) {
# print(paramRow)
# stop("Some values are NA")
# }
# mixcdf <- function(conf) 1/nConds * sum((1-p_corrects)* pnorm(conf, mean=Mconf_false, sd=sqrt(VRconf_false))+
# p_corrects*pnorm(conf, mean=Mconf_corr, sd=sqrt(VRconf_corr)))
# thetas <- NULL
# for (i in 1:length(conf_probs)) {
# thetas[i] <- optimize(function(conf) (mixcdf(conf)-conf_probs[i])^2,
# lower=min(Mconf_false,Mconf_corr)- 4*max(c(VRconf_false, VRconf_corr)),
# upper=max(Mconf_false,Mconf_corr)+ 4*max(c(VRconf_false, VRconf_corr)))$minimum
# }
# c(thetas[1],diff(thetas))
# }
#
#
# init_thetas <- apply(init_grid, FUN=get_start_thetas, MARGIN=1) # , simplify = TRUE
# init_thetas <- t(init_thetas)
# init_thetas[,2:(nRatings-1)] <- pmax(init_thetas[,2:(nRatings-1)], 0.001)
# init_thetas
#
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.