Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(dynConfiR)
library(dplyr)
library(ggplot2)
## ---- echo=TRUE---------------------------------------------------------------
data("ConfidenceOrientation")
part8 <- ConfidenceOrientation %>%
filter(participant == 8) %>%
select(SOA, stimulus, response, rt, disc_rating)
head(part8)
## ---- echo=FALSE--------------------------------------------------------------
parfit <- data.frame(v1 = 0.0372688024414027, v2 = 0.0297559327941849,
v3 = 0.228682139296959, v4 = 0.907332624555809, v5 = 1.51928135797365,
sv = 0.703366746805957, a = 1.9909337760955, z = 0.484042545790362,
sz = 0.968085010668281, t0 = 0.013792576932083, st0 = 0.50473451191079839,
thetaLower1 = 0.977932449428557, thetaLower2 = 1.4002660381916,
thetaLower3 = 1.65136147933687, thetaLower4 = 1.82689584748271,
thetaUpper1 = 0.894965128071132, thetaUpper2 = 1.21972431731305,
thetaUpper3 = 1.67435525566997, thetaUpper4 = 1.85889858426025,
tau = 1.49783458056779, w = 0.632631960506194, svis = 0.00228472967185629,
sigvis = 0.0698971790853653, fixed = "sym_thetas = TRUE",
negLogLik = 3130.4865270751, N = 1611L, k = 23L, BIC = 6430.81909296327,
AICc = 6307.61073530962, AIC = 6306.9730541502)
## -----------------------------------------------------------------------------
part8 <- part8 %>% rename(condition=SOA,
rating = disc_rating)
# parfit <- fitRTConf(part8, "dynWEV",
# restr_tau="simult_conf")
parfit
## -----------------------------------------------------------------------------
predictedResponses <-
predictWEV_Conf(parfit, "dynWEV", simult_conf = TRUE,
precision = 1e-3, maxrt = 5, subdivisions = 50)
predictedRTdist <-
predictWEV_RT(parfit, "dynWEV", simult_conf = TRUE,
maxrt = 5, precision = 1e-3, subdivisions = 50,
scaled=TRUE, DistConf = predictedResponses)
print(head(predictedResponses))
print(head(predictedRTdist))
## -----------------------------------------------------------------------------
part8 <- part8 %>%
mutate(condition = as.factor(condition),
correct = as.numeric(stimulus==response))
empirical_response_dist <- part8 %>%
group_by(condition) %>%
mutate(ntrials = n()) %>%
group_by(correct, condition, rating) %>%
summarise(p = n()/ntrials[1], .groups = "drop")
predictedResponses <- predictedResponses %>%
mutate(condition = factor(condition, labels=levels(part8$condition))) %>%
group_by(correct, condition, rating) %>%
summarise(p = mean(p), .groups = "drop")
predictedRTdist <- predictedRTdist %>%
mutate(condition = factor(condition, labels=levels(part8$condition))) %>%
group_by(correct, rating, rt) %>%
summarise(dens = mean(dens),
densscaled = mean(densscaled), .groups = "drop")
## ---- out.width="100%", fig.dim=c(6, 8)---------------------------------------
ggplot(empirical_response_dist, aes(x=rating, y=p)) +
geom_bar(aes(fill=as.factor(correct)), stat="identity")+
geom_point(data=predictedResponses) +
scale_fill_discrete(name="Accuracy")+
facet_grid(cols=vars(correct), rows=vars(condition))
## ---- out.width="100%", fig.dim=c(6, 8)---------------------------------------
ggplot(subset(part8, rt<18), aes(x=rt, color=as.factor(correct))) +
geom_density(aes(linetype="Observed"), size=1.2)+
geom_line(data = predictedRTdist,
aes(y=densscaled, linetype="Prediction"),
size=1.2)+
scale_color_discrete(name="Accuracy")+
scale_linetype_discrete(name="")+
theme(legend.position = "bottom")+
xlim(0, 5)+
facet_grid(rows=vars(rating), cols=vars(correct))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.