Nothing
library(testthat)
library(e2tree)
library(randomForest)
test_that("eComparison works correctly with valid inputs (classification case)", {
set.seed(42)
# Prepare data
data(iris)
train_idx <- sample(seq_len(nrow(iris)), size = 0.75 * nrow(iris))
training <- iris[train_idx, ]
# Train Random Forest
ensemble <- randomForest(Species ~ ., data = training, importance = TRUE, proximity = TRUE)
# Create dissimilarity matrix
D <- createDisMatrix(ensemble, data = training, label = "Species", parallel = list(active=FALSE, no_cores = 1))
# Define settings
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
# Generate e2tree model
fit <- e2tree(Species ~ ., training, D, ensemble, setting)
# Run eComparison
comparison <- eComparison(training, fit, D, graph=FALSE)
# Tests
expect_type(comparison, "list") # Should return a list
expect_true("mantel_test" %in% names(comparison))
})
test_that("eComparison handles incorrect input types (classification case)", {
set.seed(42)
data(iris)
train_idx <- sample(seq_len(nrow(iris)), size = 0.75 * nrow(iris))
training <- iris[train_idx, ]
ensemble <- randomForest(Species ~ ., data = training, importance = TRUE, proximity = TRUE)
D <- createDisMatrix(ensemble, data = training, label = "Species", parallel = list(active=FALSE, no_cores = 1))
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
fit <- e2tree(Species ~ ., training, D, ensemble, setting)
# Test incorrect inputs
expect_error(eComparison(NULL, fit, D, graph=FALSE),
"Error: 'data' must be a non-empty data frame.")
expect_error(eComparison(training, NULL, D, graph=FALSE),
"Error: 'fit' must be an 'e2tree' object.")
expect_error(eComparison(training, fit, NULL, graph=FALSE),
"Error: 'D' must be a square dissimilarity matrix.")
expect_error(eComparison(training, fit, matrix(1, 5, 5), graph=FALSE),
"Error: The number of rows in 'data' must match the dimensions of 'D'.")
})
test_that("eComparison works correctly with valid inputs (regression case)", {
set.seed(42)
# Prepare data
data(mtcars)
train_idx <- sample(seq_len(nrow(mtcars)), size = 0.75 * nrow(mtcars))
training <- mtcars[train_idx, ]
# Train Random Forest
ensemble <- randomForest(mpg ~ ., data = training, importance = TRUE, proximity = TRUE)
# Create dissimilarity matrix
D <- createDisMatrix(ensemble, data = training, label = "mpg", parallel = list(active=FALSE, no_cores = 1))
# Define settings
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
# Generate e2tree model
fit <- e2tree(mpg ~ ., training, D, ensemble, setting)
# Run eComparison
comparison <- eComparison(training, fit, D, graph=FALSE)
# Tests
expect_type(comparison, "list") # Should return a list
expect_true("mantel_test" %in% names(comparison))
})
test_that("eComparison handles incorrect input types (regression case)", {
set.seed(42)
data(mtcars)
train_idx <- sample(seq_len(nrow(mtcars)), size = 0.75 * nrow(mtcars))
training <- mtcars[train_idx, ]
ensemble <- randomForest(mpg ~ ., data = training, importance = TRUE, proximity = TRUE)
D <- createDisMatrix(ensemble, data = training, label = "mpg", parallel = list(active=FALSE, no_cores = 1))
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
fit <- e2tree(mpg ~ ., training, D, ensemble, setting)
# Test incorrect inputs
expect_error(eComparison(NULL, fit, D, graph=FALSE),
"Error: 'data' must be a non-empty data frame.")
expect_error(eComparison(training, NULL, D, graph=FALSE),
"Error: 'fit' must be an 'e2tree' object.")
expect_error(eComparison(training, fit, NULL, graph=FALSE),
"Error: 'D' must be a square dissimilarity matrix.")
expect_error(eComparison(training, fit, matrix(1, 5, 5), graph=FALSE),
"Error: The number of rows in 'data' must match the dimensions of 'D'.")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.