Nothing
eval_posterior_eDITH <- function(x, river, quant=0.5){
ss <- sort(river$AG$A, index.return=T); ss <- ss$ix
q <- numeric(river$AG$nNodes)
for (i in 1:river$AG$nNodes) q[i]<-river$AG$discharge[i]-sum(river$AG$discharge[which(river$AG$downNode==i)])
nChains <- length(x$outMCMC$chain)
mcmc.sample <- NULL
for (i in 1:nChains){
mcmc.sample <- rbind(mcmc.sample, x$outMCMC$chain[[i]][-1,1:x$outMCMC$setup$numPars])}
mcmc.sample <- unique(mcmc.sample)
probDetection_mat <- matrix(0,dim(mcmc.sample)[1],river$AG$nNodes)
p_mat <- matrix(0,dim(mcmc.sample)[1],river$AG$nNodes)
C_mat <- matrix(0,dim(mcmc.sample)[1],river$AG$nNodes)
for (r in 1:dim(mcmc.sample)[1]){
tmp <- eval.pC.pD(mcmc.sample[r,], river, ss, x$covariates, x$source.area,
q, x$ll.type, x$no.det)
# tau <- mcmc.sample[r,"tau"]*3600
# p <- eval.p(mcmc.sample[r, ], x$covariates)
# C <- evalConc2_cpp(river, ss, x$source.area, tau, p, "AG")
p_mat[r, ] <- tmp$p
C_mat[r, ] <- tmp$C
# local_expected_C <- p*x$source.area*exp(-river$AG$leng/river$AG$velocity/tau)/q
# if (x$ll.type=="norm") {
# pD <- 1 - pnorm(0, mean = local_expected_C, sd = mcmc.sample[r,"sigma"])
# } else if (x$ll.type=="lnorm"){
# pD <- 1 - plnorm(0, meanlog = log(local_expected_C^2/sqrt(mcmc.sample[r,"sigma"]^2 + local_expected_C^2)),
# sdlog = sqrt(log(mcmc.sample[r,"sigma"]^2/local_expected_C^2 + 1)))
# } else if (x$ll.type=="nbinom"){
# pD <- 1 - pnbinom(0, size = local_expected_C/(mcmc.sample[r,"omega"]-1),
# prob = 1/mcmc.sample[r,"omega"])
# } else {pD <- numeric(river$AG$nNodes)}
# if (x$no.det){
# Cstar <- mcmc.sample[r, "Cstar"]
# pD <- pD*(1-exp(-local_expected_C/Cstar))}
probDetection_mat[r, ] <- tmp$probDetection
}
x[["p_quantile"]] <- apply(p_mat,2,quantile,quant)
x[["C_quantile"]] <- apply(C_mat,2,quantile,quant)
x[["p_mean"]] <- apply(p_mat,2,mean)
x[["C_mean"]] <- apply(C_mat,2,mean)
if (x$ll.type=="custom"){
x[["probDetection_quantile"]] <- x[["probDetection_mean"]] <- numeric(0)
} else {
x[["probDetection_quantile"]] <- apply(probDetection_mat,2,quantile, quant)
x[["probDetection_mean"]] <- apply(probDetection_mat,2,mean)
}
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.