Nothing
run_eDITH_BT <-
function(data, river, covariates = NULL, Z.normalize = TRUE,
use.AEM = FALSE, n.AEM = NULL, par.AEM = NULL,
no.det = FALSE, ll.type = "norm", source.area = "AG",
mcmc.settings = NULL, likelihood = NULL, prior = NULL, sampler.type = "DREAMzs",
tau.prior = list(spec="lnorm",a=0,b=Inf, meanlog=log(5), sd=sqrt(log(5)-log(4))),
log_p0.prior = list(spec="unif",min=-20, max=0),
beta.prior = list(spec="norm",sd=1),
sigma.prior = list(spec="unif",min=0, max=max(data$values, na.rm = TRUE)),
omega.prior = list(spec="unif",min=1, max=10*max(data$values, na.rm = TRUE)),
Cstar.prior = list(spec="unif",min=0, max=max(data$values, na.rm = TRUE)),
verbose = FALSE){
if (is.null(prior) & !is.null(likelihood)){
stop('If a custom likelihood is specified, a custom prior must also be specified.')
}
if (!no.det & ll.type =="lnorm" & any(data$values==0)){
stop('If eDNA data are log-normally distributed, non-detections must be accounted for.')
}
if (!all(names(data) %in% c("ID","values"))){
stop("data must contain fields named 'ID' and 'values'.")
}
if (length(river$AG$A)==0) {
stop('river is not aggregated. You should run rivnet::aggregate_river on river prior to run_eDITH_BT.')}
if (length(river$AG$discharge)==0) {
stop('Missing hydrological data. You should run rivnet::hydro_river on river prior to run_eDITH_BT.')}
if (!is.null(likelihood)){ll.type="custom"}
if (is.null(n.AEM)){n.AEM <- round(0.1*river$AG$nNodes)}
if (is.null(covariates)){
use.AEM <- TRUE
if (verbose){
if (isTRUE(par.AEM$moranI)){
message("Covariates not specified. Production rates will be estimated
based on AEMs with significantly positive spatial autocorrelation",
appendLF=F)}
} else {
message(sprintf("Covariates not specified. Production rates will be estimated
based on the first n.AEM = %d AEMs. \n",n.AEM),appendLF=F)}
}
if (use.AEM){
par.AEM$river <- river
out <- do.call(river_to_AEM, par.AEM)
if (!is.null(out$moranI)){ select.AEM <- which(out$moranI$pvalue < 0.05)
} else {select.AEM <- 1:n.AEM}
cov.AEM <- data.frame(out$vectors[,select.AEM])
names(cov.AEM) <- paste0("AEM", select.AEM)
covariates <- data.frame(c(covariates, cov.AEM))
}
# calculate additional hydraulic variables
ss <- sort(river$AG$A,index.return=T); ss <- ss$ix
q <- numeric(river$AG$nNodes)
for (i in 1:river$AG$nNodes) q[i] <- river$AG$discharge[i] - sum(river$AG$discharge[which(river$AG$downNode==i)])
if (source.area=="AG"){
source.area <- river$AG$width*river$AG$leng
} else if (source.area=="SC"){source.area <- river$SC$A}
# Z-normalize covariates
if (Z.normalize & !is.null(covariates)){
for (i in 1:length(covariates)){
covariates[,i] <- (covariates[,i]-mean(covariates[,i]))/sd(covariates[,i])
}
}
if (is.null(prior)){
out <- prepare.prior(covariates, no.det, ll.type, tau.prior, log_p0.prior,
beta.prior, sigma.prior, omega.prior, Cstar.prior, river$AG$nNodes)
names.par <- out$names.par; allPriors <- out$allPriors
lb <- ub <- numeric(0)
for (nam in names.par){
lb <- c(lb, allPriors[[nam]]$a)
ub <- c(ub, allPriors[[nam]]$b)
}
names(lb) <- names(ub) <- names.par
density <- function(x){density_generic(x, allPriors = allPriors)}
sampler <- function(n=1){sampler_generic(n, allPriors = allPriors)}
prior <- createPrior(density = density, sampler = sampler, lower = lb, upper = ub)
} else {
names.par <- names(prior$lower)
if (is.null(names.par)){
stop('Missing parameter names in user-defined prior.
Ensure that objects "lower" and "upper" of the prior contain parameter names.')
}
# re-structure sampler so that it yields parameter names
sampler_no.name <- prior$sampler
sampler2 <- function(n=1){ ss <- sampler_no.name(n); colnames(ss) <- names.par; return(ss[1,])}
prior <- createPrior(density = prior$density, sampler = sampler2, lower = prior$lower, upper = prior$upper)
}
if(is.null(likelihood)){
likelihood <- function(param){likelihood_generic(param, river, ss, source.area, covariates,
data, no.det, ll.type)}}
#options(warn=-1) # ignore warnings
setUp <- createBayesianSetup(likelihood = likelihood, prior = prior, names = names.par)
if (is.null(mcmc.settings)){
settings <- list(iterations = 2.7e6, burnin = 1.8e6, message = verbose, thin = 10)
} else { settings <- mcmc.settings}
outMCMC <- runMCMC(bayesianSetup = setUp, sampler = sampler.type, settings = settings)
map <- MAP(outMCMC)
chains <- outMCMC$chain[[1]]
n.chains <- length(outMCMC$chain)
if (n.chains > 1){
for (ind in 2:n.chains){ chains <- rbind(chains, outMCMC$chain[[ind]])}
}
cI <- getCredibleIntervals(chains)
colnames(cI) <- c(names.par,"logpost","loglik","prior")
gD <- gelmanDiagnostics(outMCMC)
tmp <- eval.pC.pD(map$parametersMAP, river, ss, covariates, source.area,
q, ll.type, no.det)
out <- list(p_map = tmp$p, C_map = tmp$C,
probDet_map = tmp$probDetection,
param_map = map$parametersMAP,
ll.type=ll.type, no.det=no.det, cI=cI, gD=gD, data=data,
covariates = covariates, source.area = source.area,
outMCMC = outMCMC) # this is biggish (OK with thinning)
invisible(out)
}
set_boundaries <- function(ll){
if (ll$spec=="unif" & !is.null(ll$min) & is.null(ll$a)) {ll$a <- ll$min}
if (ll$spec=="unif" & !is.null(ll$max) & is.null(ll$b)) {ll$b <- ll$max}
if(is.null(ll$a)){ll$a <- -Inf}
if(is.null(ll$b)){ll$b <- Inf}
invisible(ll)
}
density_generic = function(param, allPriors){
nPars <- length(allPriors)
d_comp <- numeric(nPars)
names(d_comp) <- names(allPriors)
for (ind in 1:nPars){
nam <- names(allPriors)[ind]
pri <- allPriors[[nam]]
pri[["x"]] <- param[nam]
d_comp[nam] <- log(do.call(dtrunc, pri))
}
d_out <- sum(d_comp)
return(d_out)
}
sampler_generic = function(n=1, allPriors){
nPars <- length(allPriors)
r_comp <- numeric(nPars)
names(r_comp) <- names(allPriors)
for (ind in 1:nPars){
nam <- names(allPriors)[ind]
pri <- allPriors[[nam]]
pri[["n"]] <- n
r_comp[nam] <- do.call(rtrunc, pri)
}
return(r_comp)
}
likelihood_generic <- function(param, river, ss, source.area, covariates, data,
no.det=FALSE, ll.type="norm"){
tmp <- eval.pC.pD(param, river, ss, covariates, source.area)
ConcMod <- tmp$C
# if (!is.null(tau_min)){
# tau <- (tau_min + (tau_max-tau_min)*(param["tau"])/(1+exp(param["tau"])))*3600
# } else {
# tau <- param["tau"]*3600}
#
# p <- eval.p(param, covariates)
# ConcMod <- evalConc2_cpp(river, ss, source.area, tau, p, "AG")
if (no.det){
phi <- exp(-ConcMod/param["Cstar"])
sites_nondet <- data$ID[data$values==0]
sites_data_det <- data$values!=0
sites_det <- data$ID[sites_data_det]
list_density <- prepare.list.density(0, param, ConcMod[sites_nondet], ll.type) # problem with a
density0 <- do.call(dtrunc, list_density)
prob_0detection <- (1-phi[sites_nondet])*density0
foo <- is.nan(prob_0detection) | prob_0detection=="Inf"
prob_0detection[foo] <- 1-phi[sites_nondet[foo]] # so that overall prob.nondet=1
loglik_nondet <- log(phi[sites_nondet] + prob_0detection)
loglik_nondet[loglik_nondet==-Inf] <- -1e4
loglik_det <- log(1-phi[sites_det])
loglik_det[loglik_det==-Inf] <- -1e4
} else {
loglik_nondet <- loglik_det <- 0
sites_data_det <- 1:length(data$ID)
sites_det <- data$ID
}
if (ll.type=="nbinom" | ll.type=="geom"){
y <- round(data$values[sites_data_det])
} else {y <- data$values[sites_data_det]}
list_density <- prepare.list.density(y, param, ConcMod[sites_det], ll.type)
loglik_values <- log(do.call(dtrunc, list_density))
loglik_values[loglik_values==-Inf] <- -1e4
loglik_values[is.nan(loglik_values)] <- -1e4
loglik <- sum(loglik_nondet) + sum(loglik_det) + sum(loglik_values)
return(loglik)
}
prepare.prior <- function(covariates, no.det, ll.type, tau.prior, log_p0.prior,
beta.prior, sigma.prior, omega.prior, Cstar.prior, nNodes){
if (!is.null(covariates)){
names.beta <- paste0("beta_",names(covariates))
if (ll.type=="geom"){
names.par <- c("tau","log_p0",names.beta)
} else if (ll.type=="nbinom"){
names.par <- c("tau","log_p0",names.beta,"omega")
} else {
names.par <- c("tau","log_p0",names.beta,"sigma")
}
if (no.det){names.par <- c(names.par,"Cstar")}
# split beta prior among covariates
if(length(beta.prior$spec==1)){
for (nam in names.beta){
assign(paste0(nam,".prior"),beta.prior)
}
} else {
if (length(beta.prior$spec)!=length(names.beta)){
stop("Number of elements in beta.prior does not match number of covariates")}
fieldnames <- names(beta.prior)
for (ind in 1:length(names.beta)){
nam <- names.beta[ind]
foo <- list()
for (fn in fieldnames){
foo[[fn]] <- beta.prior[[fn]][ind]
}
assign(paste0(nam,".prior"),foo)
}
}
# assign boundaries and copy to allPriors
allPriors <- list()
for (nam in names.par){
eval(parse(text=paste0(nam,".prior <- set_boundaries(",nam,".prior)")))
eval(parse(text=paste0('allPriors[["',nam,'"]] <- ',nam,'.prior')))
}
} else {
names.p <- character(nNodes)
for (ind in 1:nNodes) names.p[ind] <- paste0("log.p",ind)
names.par <- c("tau", names.p)
# assign boundaries and copy to allPriors
allPriors <- list()
tau.prior <- set_boundaries(tau.prior)
allPriors[["tau"]] <- tau.prior
for (nam in names.par[-1]){
eval(parse(text=paste0(nam,".prior <- set_boundaries(log_p0.prior)")))
eval(parse(text=paste0('allPriors[["',nam,'"]] <- ',nam,'.prior')))
}
if (ll.type=="nbinom"){
names.par <- c(names.par,"omega")
omega.prior <- set_boundaries(omega.prior)
allPriors[["omega"]] <- omega.prior
} else {
names.par <- c(names.par,"sigma")
sigma.prior <- set_boundaries(sigma.prior)
allPriors[["sigma"]] <- sigma.prior
}
}
out <- list(names.par=names.par, allPriors=allPriors)
invisible(out)
}
prepare.list.density <- function(x, param, ConcMod, ll.type){
list_density <- list(x=x, spec=ll.type)
if (ll.type=="norm"){
list_density[["mean"]] <- ConcMod
list_density[["sd"]] <- param["sigma"]
list_density[["a"]] <- 0
} else if (ll.type=="lnorm"){
list_density[["meanlog"]] <- log(ConcMod^2/sqrt(param["sigma"]^2 + ConcMod^2))
list_density[["sdlog"]] <- sqrt(log(param["sigma"]^2/ConcMod^2 + 1))
list_density[["a"]] <- 0
} else if (ll.type=="nbinom"){
list_density[["size"]] <- ConcMod/(param["omega"]-1)
list_density[["prob"]] <- 1/param["omega"]
list_density[["a"]] <- -Inf # otherwise 0 is excluded from the distribution
} else if (ll.type=="geom"){
list_density[["prob"]] <- 1/(1+ConcMod)
list_density[["a"]] <- -Inf # otherwise 0 is excluded from the distribution
}
invisible(list_density)
}
eval.p <- function(param, covariates){
if (!is.null(covariates)){
p <- 10^param["log_p0"]*exp(as.numeric(as.matrix(covariates) %*% as.matrix(param[grep("beta_",names(param))])))
} else {
p <- 10^param[grep("log.p",names(param))]
}
invisible(p)
}
eval.pC.pD <- function(param, river, ss, covariates, source.area,
q=NULL,ll.type=NULL, no.det=NULL){
tau <- param["tau"]*3600
p <- eval.p(param, covariates)
C <- evalConc2_cpp(river, ss, source.area, tau, p, "AG")
if (!is.null(ll.type)){
local_expected_C <- p*source.area*exp(-river$AG$leng/river$AG$velocity/tau)/q
if (ll.type=="geom"){
probDetection <- 1 - pgeom(0, prob = 1/(1+local_expected_C))
} else if (ll.type=="norm") {
probDetection <- 1 - pnorm(0, mean = local_expected_C, sd = param["sigma"])
} else if (ll.type=="lnorm"){
probDetection <- 1 - plnorm(0, meanlog = log(local_expected_C^2/sqrt(param["sigma"]^2 + local_expected_C^2)),
sdlog = sqrt(log(param["sigma"]^2/local_expected_C^2 + 1)))
} else if (ll.type=="nbinom"){
probDetection <- 1 - pnbinom(0, size = local_expected_C/(param["omega"]-1),
prob = 1/param["omega"])
} else {probDetection = numeric(0)}
if (no.det) probDetection <- probDetection*(1-exp(-local_expected_C/param["Cstar"]))
}
out <- list(p=p, C=C, tau=tau/3600)
if (!is.null(ll.type)){out[["probDetection"]] <- probDetection}
invisible(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.