View source: R/evaluation_metrics.R
| evaluation_metrics | R Documentation |
Calculate AUC, TSS, and RMSE for given density predictions and validation data
evaluation_metrics(x, x.idx, y, y.idx, count.flag = FALSE)
x |
object of class sf; SDM predictions |
x.idx |
name or index of column in |
y |
object of class sf; validation data |
y.idx |
name or index of column in |
count.flag |
logical; |
If count.flag == TRUE, then eSDM::model_abundance(x, x.idx, FALSE) will be run
to calculate predicted abundance and thus calculate RMSE.
Note that this assumes the data in column x.idx of x are density values.
If count.flag == FALSE, then all of the values in column y.idx of y must be 0 or 1.
All rows of x with a value of NA in column x.idx and
all rows of y with a value of NA in column y.idx are removed before calculating metrics
A numeric vector with AUC, TSS and RMSE values, respectively.
If count.flag == FALSE, the RMSE value will be NA
evaluation_metrics(preds.1, 2, validation.data, "sight")
evaluation_metrics(preds.1, "Density2", validation.data, "count", TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.