easyanova-package: Analysis of Variance and Other Important Complementary...

Description Details Author(s) References See Also Examples

Description

Perform analysis of variance and other important complementary analyzes. The functions are easy to use. Performs analysis in various designs, with balanced and unbalanced data.

Details

Package: easyanova
Type: Package
Version: 7.0
Date: 2019-07-23
License: GPL-2

Author(s)

Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>

References

CRUZ, C.D. and CARNEIRO, P.C.S. Modelos biometricos aplicados ao melhoramento genetico. 2nd Edition. Vicosa, UFV, v.2, 2006. 585p.

KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.

SAMPAIO, I. B. M. Estatistica aplicada a experimentacao animal. 3nd Edition. Belo Horizonte: Editora FEPMVZ, Fundacao de Ensino e Pesquisa em Medicina Veterinaria e Zootecnia, 2010. 264p.

SANDERS W.L. and GAYNOR, P.J. Analysis of switchback data using Statistical Analysis System, Inc. Software. Journal of Dairy Science, 70.2186-2191. 1987.

PIMENTEL-GOMES, F. and GARCIA C.H. Estatistica aplicada a experimentos agronomicos e florestais: exposicao com exemplos e orientacoes para uso de aplicativos. Editora Fealq, v.11, 2002. 309p.

RAMALHO, M. A. P.; FERREIRA, D. F. and OLIVEIRA, A. C. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA, 2005, 322p.

See Also

ea1, ea2, ec

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Kaps and Lamberson(2009)
data(data1)
data(data2)
data(data3)
data(data4)

# analysis in completely randomized design
r1<-ea1(data1, design=1)

names(r1)

r1

# analysis in randomized block design
r2<-ea1(data2, design=2)

# analysis in latin square design
r3<-ea1(data3, design=3)

# analysis in several latin squares design
r4<-ea1(data4, design=4)

r1[1]
r2[1]
r3[1]
r4[1]

# analysis in unbalanced randomized block design
response<-ifelse(data2$Gain>850, NA, data2$Gain)
ndata<-data.frame(data2[-3],response)
ndata

r5<-ea1(ndata, design=2 )

r5

# multivariable response (list argument = TRUE)
t<-c('a','a','a','b','b','b','c','c','c')
r1<-c(10,12,12.8,4,6,8,14,15,16)
r2<-c(102,105,106,125,123,124,99,95,96)
r3<-c(560,589,590,658,678,629,369,389,378)


d<-data.frame(t,r1,r2,r3)

results=ea1(d, design=1, list=TRUE)
names(results)
results

results[1][[1]]

names(results[1][[1]])

easyanova documentation built on July 28, 2019, 1:05 a.m.