R/eb.R

Defines functions eb

Documented in eb

eb <-
function(tr.total=tr.total,
               co.x=co.x,
               coefs=coefs,
               base.weight=base.weight,
               max.iterations=max.iterations,
               constraint.tolerance=constraint.tolerance,
               print.level=print.level
               ) {

converged <- FALSE
for(iter in 1:max.iterations) {
 weights.temp <-  c(exp(co.x %*% coefs))
 weights.ebal <- weights.temp *  base.weight
 co.x.agg   <- c(weights.ebal %*% co.x)
 gradient   <- co.x.agg - tr.total
 if(max(abs(gradient))<constraint.tolerance){
 converged <- TRUE
 break
 }
 if(print.level>=2){ cat("Iteration",iter,"maximum deviation is =",format(max(abs(gradient)),digits=4),"\n") }
 hessian = t(co.x) %*% (weights.ebal * co.x)
 Coefs  <- coefs
 newton <- solve(hessian,gradient)
 coefs  <- coefs - newton
 loss.new <- line.searcher(Base.weight=base.weight,Co.x=co.x,Tr.total=tr.total,coefs=Coefs,Newton=newton,ss=1)
 loss.old <- line.searcher(Base.weight=base.weight,Co.x=co.x,Tr.total=tr.total,coefs=Coefs,Newton=newton,ss=0)
if(print.level>=3){cat("new loss",loss.new,"old loss=",loss.old,"\n")}

 if(loss.old <= loss.new){
 ss.out <- optimize(line.searcher,
                lower=.00001,upper=1,maximum=FALSE,
                Base.weight=base.weight,Co.x=co.x,Tr.total=tr.total,coefs=Coefs,Newton=newton)

  if(print.level>=3){cat("LS Step Length is ",ss.out$minimum,"\n")}
  if(print.level>=3){cat("Loss is",ss.out$objective,"\n")}
  coefs = Coefs - ss.out$minimum*solve(hessian,gradient)
 }
}
if(print.level>=1 && converged){cat("Converged within tolerance \n")}
return(
       list(
            maxdiff=max(abs(gradient)),
            coefs=coefs,
            Weights.ebal=weights.ebal,
            converged=converged
            )
       )
}

Try the ebal package in your browser

Any scripts or data that you put into this service are public.

ebal documentation built on June 9, 2022, 9:05 a.m.