bray_curtis | R Documentation |
Bray-Curtis beta diversity metric.
bray_curtis(counts, weighted = TRUE, pairs = NULL, cpus = n_cpus())
counts |
An OTU abundance matrix where each column is a sample, and
each row is an OTU. Any object coercible with |
weighted |
If |
pairs |
Which combinations of samples should distances be
calculated for? The default value ( |
cpus |
How many parallel processing threads should be used. The
default, |
A dist
object.
In the formulas below, x
and y
are two columns (samples) from counts
.
n
is the number of rows (OTUs) in counts
.
D = \displaystyle \frac{\sum_{i = 1}^{n} |x_i - y_i|}{\sum_{i = 1}^{n} (x_i + y_i)}
x <- c(4, 0, 3, 2, 6) y <- c(0, 8, 0, 0, 5) sum(abs(x-y)) / sum(x+y) #> 0.6428571
Sorenson T 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Kongelige Danske Videnskabernes Selskab, 5.
Bray JR and Curtis JT 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27(4). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/1942268")}
Other beta_diversity:
canberra()
,
euclidean()
,
generalized_unifrac()
,
gower()
,
jaccard()
,
kulczynski()
,
manhattan()
,
unweighted_unifrac()
,
variance_adjusted_unifrac()
,
weighted_normalized_unifrac()
,
weighted_unifrac()
# Example counts matrix
ex_counts
# Bray-Curtis weighted distance matrix
bray_curtis(ex_counts)
# Bray-Curtis unweighted distance matrix
bray_curtis(ex_counts, weighted = FALSE)
# Only calculate distances for A vs all.
bray_curtis(ex_counts, pairs = 1:3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.