euclidean | R Documentation |
Euclidean beta diversity metric.
euclidean(counts, weighted = TRUE, pairs = NULL, cpus = n_cpus())
counts |
An OTU abundance matrix where each column is a sample, and
each row is an OTU. Any object coercible with |
weighted |
If |
pairs |
Which combinations of samples should distances be
calculated for? The default value ( |
cpus |
How many parallel processing threads should be used. The
default, |
A dist
object.
In the formulas below, x
and y
are two columns (samples) from counts
.
n
is the number of rows (OTUs) in counts
.
D = \displaystyle \sqrt{\sum_{i = 1}^{n} (x_i - y_i)^{2}}
x <- c(4, 0, 3, 2, 6) y <- c(0, 8, 0, 0, 5) sqrt(sum((x-y)^2)) #> 9.69536
Gower JC, Legendre P 1986. Metric and Euclidean Properties of Dissimilarity Coefficients. Journal of Classification. 3. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/BF01896809")}
Legendre P, Caceres M 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters. 16(8). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/ele.12141")}
Other beta_diversity:
bray_curtis()
,
canberra()
,
generalized_unifrac()
,
gower()
,
jaccard()
,
kulczynski()
,
manhattan()
,
unweighted_unifrac()
,
variance_adjusted_unifrac()
,
weighted_normalized_unifrac()
,
weighted_unifrac()
# Example counts matrix
ex_counts
# Euclidean weighted distance matrix
euclidean(ex_counts)
# Euclidean unweighted distance matrix
euclidean(ex_counts, weighted = FALSE)
# Only calculate distances for A vs all.
euclidean(ex_counts, pairs = 1:3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.