jaccard | R Documentation |
Jaccard beta diversity metric.
jaccard(counts, weighted = TRUE, pairs = NULL, cpus = n_cpus())
counts |
An OTU abundance matrix where each column is a sample, and
each row is an OTU. Any object coercible with |
weighted |
If |
pairs |
Which combinations of samples should distances be
calculated for? The default value ( |
cpus |
How many parallel processing threads should be used. The
default, |
A dist
object.
In the formulas below, x
and y
are two columns (samples) from counts
.
n
is the number of rows (OTUs) in counts
.
b = \displaystyle \frac{\sum_{i = 1}^{n} |x_i - y_i|}{\sum_{i = 1}^{n} x_i + y_i}
D = \displaystyle \frac{2b}{1 + b}
x <- c(4, 0, 3, 2, 6) y <- c(0, 8, 0, 0, 5) bray <- sum(abs(x-y)) / sum(x+y) 2 * bray / (1 + bray) #> 0.7826087
Jaccard P 1908. Nouvellesrecherches sur la distribution florale. Bulletin de la Societe Vaudoise des Sciences Naturelles, 44(163). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.5169/seals-268384")}
Other beta_diversity:
bray_curtis()
,
canberra()
,
euclidean()
,
generalized_unifrac()
,
gower()
,
kulczynski()
,
manhattan()
,
unweighted_unifrac()
,
variance_adjusted_unifrac()
,
weighted_normalized_unifrac()
,
weighted_unifrac()
# Example counts matrix
ex_counts
# Jaccard weighted distance matrix
jaccard(ex_counts)
# Jaccard unweighted distance matrix
jaccard(ex_counts, weighted = FALSE)
# Only calculate distances for A vs all.
jaccard(ex_counts, pairs = 1:3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.