Description Usage Arguments Details Value Author(s) References See Also Examples
Computes the Cliff's Delta effect size for ordinal variables with the related confidence interval using efficient algorithms.
1 2 3 4 5 6 7 8 9 10 11 | cliff.delta(d, ... )
## S3 method for class 'formula'
cliff.delta(formula, data=list() ,conf.level=.95,
use.unbiased=TRUE, use.normal=FALSE,
return.dm=FALSE, ...)
## Default S3 method:
cliff.delta(d, f, conf.level=.95,
use.unbiased=TRUE, use.normal=FALSE,
return.dm=FALSE, ...)
|
d |
a numeric vector giving either the data values (if |
f |
either a factor with two levels or a numeric vector of values (see Detials) |
conf.level |
confidence level of the confidence interval |
use.unbiased |
a logical indicating whether to compute the delta's variance using the "unbiased" estimate formula or the "consistent" estimate |
use.normal |
logical indicating whether to use the normal or Student-t distribution for the confidence interval estimation |
return.dm |
logical indicating whether to return the dominance matrix. Warning: the explicit computation of the dominance uses a sub-optimal algorithm both in terms of memory and time |
formula |
a formula of the form |
data |
an optional matrix or data frame containing the variables in the formula |
... |
further arguments to be passed to or from methods. |
Uses the original formula reported in (Cliff 1996).
If the dominance matrix is required i.e. return.dm=TRUE
) the full matrix is computed thus using the naive algorithm.
Otherwise, if treatment
and control
are factor
s then the optimized linear complexity algorithm is used, otherwise the RLE algorithm (with complexity n log n) is used.
A list of class effsize
containing the following components:
estimate |
the Cliff's delta estimate |
conf.int |
the confidence interval of the delta |
var |
the estimated variance of the delta |
conf.level |
the confidence level used to compute the confidence interval |
dm |
the dominance matrix used for computation, only if |
magnitude |
a qualitative assessment of the magnitude of effect size |
method |
the method used for computing the effect size, always |
variance.estimation |
the method used to compute the delta variance estimation, either |
CI.distribution |
the distribution used to compute the confidence interval, either |
The magnitude is assessed using the thresholds provided in (Romano 2006), i.e. |d|<0.147 "negligible"
, |d|<0.33 "small"
, |d|<0.474 "medium"
, otherwise "large"
Marco Torchiano http://softeng.polito.it/torchiano/
Norman Cliff (1996). Ordinal methods for behavioral data analysis. Routledge.
J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, Appropriate statistics for ordinal level data: Should we really be using t-test and cohen's d for evaluating group differences on the NSSE and other surveys?, in: Annual meeting of the Florida Association of Institutional Research, 2006.
K.Y. Hogarty and J.D.Kromrey (1999). Using SAS to Calculate Tests of Cliff's Delta. Proceedings of the Twenty-Foursth Annual SAS User Group International Conference, Miami Beach, Florida, p 238. Available at: https://support.sas.com/resources/papers/proceedings/proceedings/sugi24/Posters/p238-24.pdf
1 2 3 4 5 6 |
Cliff's Delta
delta estimate: -0.25 (small)
95 percent confidence interval:
inf sup
-0.7265846 0.3890062
10 20 30 40 40 50
10 0 -1 -1 -1 -1 -1
10 0 -1 -1 -1 -1 -1
20 1 0 -1 -1 -1 -1
20 1 0 -1 -1 -1 -1
20 1 0 -1 -1 -1 -1
30 1 1 0 -1 -1 -1
30 1 1 0 -1 -1 -1
30 1 1 0 -1 -1 -1
40 1 1 1 0 0 -1
50 1 1 1 1 1 0
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.