Description Usage Arguments Details Value Author(s) References See Also Examples
Computes the Cliff's Delta effect size for ordinal variables with the related confidence interval using efficient algorithms.
1 2 3 4 5 6 7 8 9 10 11 | cliff.delta(d, ... )
## S3 method for class 'formula'
cliff.delta(formula, data=list() ,conf.level=.95,
use.unbiased=TRUE, use.normal=FALSE,
return.dm=FALSE, ...)
## Default S3 method:
cliff.delta(d, f, conf.level=.95,
use.unbiased=TRUE, use.normal=FALSE,
return.dm=FALSE, ...)
|
d |
a numeric vector giving either the data values (if |
f |
either a factor with two levels or a numeric vector of values (see Detials) |
conf.level |
confidence level of the confidence interval |
use.unbiased |
a logical indicating whether to compute the delta's variance using the "unbiased" estimate formula or the "consistent" estimate |
use.normal |
logical indicating whether to use the normal or Student-t distribution for the confidence interval estimation |
return.dm |
logical indicating whether to return the dominance matrix. Warning: the explicit computation of the dominance uses a sub-optimal algorithm both in terms of memory and time |
formula |
a formula of the form |
data |
an optional matrix or data frame containing the variables in the formula |
... |
further arguments to be passed to or from methods. |
Uses the original formula reported in (Cliff 1996).
If the dominance matrix is required i.e. return.dm=TRUE) the full matrix is computed thus using the naive algorithm.
Otherwise, if treatment and control are factors then the optimized linear complexity algorithm is used, otherwise the RLE algorithm (with complexity n log n) is used.
A list of class effsize containing the following components:
estimate |
the Cliff's delta estimate |
conf.int |
the confidence interval of the delta |
var |
the estimated variance of the delta |
conf.level |
the confidence level used to compute the confidence interval |
dm |
the dominance matrix used for computation, only if |
magnitude |
a qualitative assessment of the magnitude of effect size |
method |
the method used for computing the effect size, always |
variance.estimation |
the method used to compute the delta variance estimation, either |
CI.distribution |
the distribution used to compute the confidence interval, either |
The magnitude is assessed using the thresholds provided in (Romano 2006), i.e. |d|<0.147 "negligible", |d|<0.33 "small", |d|<0.474 "medium", otherwise "large"
Marco Torchiano http://softeng.polito.it/torchiano/
Norman Cliff (1996). Ordinal methods for behavioral data analysis. Routledge.
J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, Appropriate statistics for ordinal level data: Should we really be using t-test and cohen's d for evaluating group differences on the NSSE and other surveys?, in: Annual meeting of the Florida Association of Institutional Research, 2006.
K.Y. Hogarty and J.D.Kromrey (1999). Using SAS to Calculate Tests of Cliff's Delta. Proceedings of the Twenty-Foursth Annual SAS User Group International Conference, Miami Beach, Florida, p 238. Available at: https://support.sas.com/resources/papers/proceedings/proceedings/sugi24/Posters/p238-24.pdf
1 2 3 4 5 6 |
Cliff's Delta
delta estimate: -0.25 (small)
95 percent confidence interval:
inf sup
-0.7265846 0.3890062
10 20 30 40 40 50
10 0 -1 -1 -1 -1 -1
10 0 -1 -1 -1 -1 -1
20 1 0 -1 -1 -1 -1
20 1 0 -1 -1 -1 -1
20 1 0 -1 -1 -1 -1
30 1 1 0 -1 -1 -1
30 1 1 0 -1 -1 -1
30 1 1 0 -1 -1 -1
40 1 1 1 0 0 -1
50 1 1 1 1 1 0
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.