Nothing
Code
xgboost
Output
##### xgb.Booster
raw: 74.2 Kb
call:
xgboost::xgb.train(params = .params, data = .train, nrounds = 100,
watchlist = list(train = .train, test = .test), verbose = 0,
early_stopping_rounds = 10, tree_method = "hist", objective = .objective,
nthread = 1)
params (as set within xgb.train):
eta = "0.3", max_bin = "10", max_depth = "1", min_child_weight = "5", tree_method = "hist", objective = "binary:logistic", nthread = "1", validate_parameters = "TRUE"
xgb.attributes:
best_iteration, best_msg, best_ntreelimit, best_score, niter
callbacks:
cb.evaluation.log()
cb.early.stop(stopping_rounds = early_stopping_rounds, maximize = maximize,
verbose = verbose)
# of features: 13
niter: 96
best_iteration : 86
best_ntreelimit : 86
best_score : 0.4421503
best_msg : [86] train-logloss:0.417583 test-logloss:0.442150
nfeatures : 13
evaluation_log:
iter train_logloss test_logloss
<num> <num> <num>
1 0.6279229 0.6303495
2 0.5869984 0.5894989
---
95 0.4157892 0.4425857
96 0.4156102 0.4432699
Code
xgboost
Output
##### xgb.Booster
raw: 149.7 Kb
call:
xgboost::xgb.train(params = .params, data = .train, nrounds = 100,
watchlist = list(train = .train, test = .test), verbose = 0,
early_stopping_rounds = 10, tree_method = "hist", objective = .objective,
nthread = 1)
params (as set within xgb.train):
eta = "0.3", max_bin = "10", max_depth = "1", min_child_weight = "5", num_class = "6", tree_method = "hist", objective = "multi:softprob", nthread = "1", validate_parameters = "TRUE"
xgb.attributes:
best_iteration, best_msg, best_ntreelimit, best_score, niter
callbacks:
cb.evaluation.log()
cb.early.stop(stopping_rounds = early_stopping_rounds, maximize = maximize,
verbose = verbose)
# of features: 30
niter: 33
best_iteration : 23
best_ntreelimit : 23
best_score : 1.246428
best_msg : [23] train-mlogloss:1.178121 test-mlogloss:1.246428
nfeatures : 30
evaluation_log:
iter train_mlogloss test_mlogloss
<num> <num> <num>
1 1.623174 1.631783
2 1.515108 1.531188
---
32 1.159813 1.249701
33 1.158088 1.250462
Code
xgboost
Output
##### xgb.Booster
raw: 40.2 Kb
call:
xgboost::xgb.train(params = .params, data = .train, nrounds = 100,
watchlist = list(train = .train, test = .test), verbose = 0,
early_stopping_rounds = 10, tree_method = "hist", objective = .objective,
nthread = 1)
params (as set within xgb.train):
eta = "0.3", max_bin = "10", max_depth = "1", min_child_weight = "5", tree_method = "hist", objective = "reg:squarederror", nthread = "1", validate_parameters = "TRUE"
xgb.attributes:
best_iteration, best_msg, best_ntreelimit, best_score, niter
callbacks:
cb.evaluation.log()
cb.early.stop(stopping_rounds = early_stopping_rounds, maximize = maximize,
verbose = verbose)
# of features: 73
niter: 50
best_iteration : 40
best_ntreelimit : 40
best_score : 0.1165337
best_msg : [40] train-rmse:0.064010 test-rmse:0.116534
nfeatures : 73
evaluation_log:
iter train_rmse test_rmse
<num> <num> <num>
1 3.31007782 3.3068878
2 2.31969213 2.3262197
---
49 0.06207940 0.1175223
50 0.06191289 0.1188113
Code
xgb_binning
Output
[1] 1 2 3 5 6 9 12 15 20
Code
xgb_binning
Output
[1] 26 31 35 38
Code
embed:::xgb_binning(attrition_data_small, "EducationField", "Age", sample_val = 0.3,
learn_rate = 0.3, num_breaks = 10, tree_depth = 1, min_n = 5)
Output
numeric(0)
Code
xgb_binning
Output
[1] 42.01972 42.02510 42.03122 42.03462 42.03840 42.04638 42.05236 42.05917
Code
embed:::xgb_binning(ames_data_small, "Sale_Price", "Latitude", sample_val = 0.3,
learn_rate = 0.3, num_breaks = 10, tree_depth = 1, min_n = 5)
Output
numeric(0)
Code
xgb_train_bins[1:10, ]
Output
# A tibble: 10 x 3
x z class
<fct> <fct> <fct>
1 [0.6808, Inf] [0.4208,0.7999) a
2 [0.5749,0.6808) [0.4208,0.7999) b
3 [0.3687,0.5749) [-Inf,0.3327) b
4 [0.5749,0.6808) [0.4208,0.7999) b
5 [0.6808, Inf] [0.4208,0.7999) a
6 [0.5749,0.6808) [0.7999, Inf] a
7 [0.5749,0.6808) [-Inf,0.3327) b
8 [0.5749,0.6808) [-Inf,0.3327) a
9 [0.2779,0.3687) [0.4208,0.7999) a
10 [0.3687,0.5749) [0.4208,0.7999) b
Code
xgb_test_bins[1:10, ]
Output
# A tibble: 10 x 3
x z class
<fct> <fct> <fct>
1 [0.5749,0.6808) [-Inf,0.3327) b
2 [0.5749,0.6808) [0.4208,0.7999) b
3 [0.3687,0.5749) [-Inf,0.3327) b
4 [0.2779,0.3687) [0.4208,0.7999) b
5 [0.6808, Inf] [0.7999, Inf] a
6 [0.3687,0.5749) [-Inf,0.3327) b
7 [0.2779,0.3687) [0.4208,0.7999) a
8 [0.6808, Inf] [0.7999, Inf] a
9 [0.3687,0.5749) [0.7999, Inf] b
10 [0.3687,0.5749) [0.4208,0.7999) b
Code
recipe(class ~ ., data = sim_tr_cls[1:9, ]) %>% step_discretize_xgb(
all_predictors(), outcome = "class") %>% prep()
Condition
Error in `step_discretize_xgb()`:
Caused by error in `prep()`:
! Too few observations in the early stopping validation set.Consider increasing the `sample_val` parameter.
Code
set.seed(1)
recipe(Status ~ ., data = credit_data_train) %>% step_discretize_xgb(Time,
outcome = "Status") %>% prep(retain = TRUE)
Condition
Warning:
More than 20 unique training set values are required. Predictors 'Time' were not processed; their original values will be used.
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 13
-- Training information
Training data contained 3340 data points and 301 incomplete rows.
-- Operations
* Discretizing variables using xgboost: <none> | Trained
Code
xgb_train_bins[1:10, ]
Output
# A tibble: 10 x 3
x z class
<fct> <fct> <fct>
1 [0.6879, Inf] [0.3274, Inf] c
2 [0.5863,0.6879) [0.3274, Inf] b
3 [0.3821,0.5863) [-Inf,0.3274) b
4 [0.5863,0.6879) [0.3274, Inf] b
5 [0.6879, Inf] [0.3274, Inf] c
6 [0.5863,0.6879) [0.3274, Inf] c
7 [0.5863,0.6879) [-Inf,0.3274) b
8 [0.5863,0.6879) [-Inf,0.3274) c
9 [-Inf,0.2887) [0.3274, Inf] a
10 [0.3821,0.5863) [0.3274, Inf] b
Code
xgb_test_bins[1:10, ]
Output
# A tibble: 10 x 3
x z class
<fct> <fct> <fct>
1 [0.5863,0.6879) [-Inf,0.3274) b
2 [0.5863,0.6879) [0.3274, Inf] b
3 [0.3821,0.5863) [-Inf,0.3274) b
4 [0.2887,0.3821) [0.3274, Inf] b
5 [0.6879, Inf] [0.3274, Inf] c
6 [0.3821,0.5863) [-Inf,0.3274) b
7 [0.2887,0.3821) [0.3274, Inf] a
8 [0.6879, Inf] [0.3274, Inf] c
9 [0.3821,0.5863) [0.3274, Inf] b
10 [0.3821,0.5863) [0.3274, Inf] b
Code
recipe(class ~ ., data = sim_tr_mcls[1:9, ]) %>% step_discretize_xgb(
all_predictors(), outcome = "class") %>% prep()
Condition
Error in `step_discretize_xgb()`:
Caused by error in `prep()`:
! Too few observations in the early stopping validation set.Consider increasing the `sample_val` parameter.
Code
embed:::xgb_binning(const_outcome, "outcome", "predictor", sample_val = 0.2,
learn_rate = 0.3, num_breaks = 10, tree_depth = 1, min_n = 5)
Condition
Error:
! Outcome variable only has less than 2 levels. Doesn't conform to regresion or classification task.
Code
xgb_rec_cw
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 2
case_weights: 1
-- Training information
Training data contained 1000 data points and no incomplete rows.
-- Operations
* Discretizing variables using xgboost: x and z | Trained, weighted
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Operations
* Discretizing variables using xgboost: <none>
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Training information
Training data contained 32 data points and no incomplete rows.
-- Operations
* Discretizing variables using xgboost: <none> | Trained
Code
print(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 2
-- Operations
* Discretizing variables using xgboost: all_predictors()
Code
prep(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 2
-- Training information
Training data contained 1000 data points and no incomplete rows.
-- Operations
* Discretizing variables using xgboost: x and z | Trained
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.