lambertW | R Documentation |
Computes the Lambert W function, giving efficient solutions to the equation x*exp(x)==z
lambertW_base(z, b = 0, maxiter = 10, eps = .Machine$double.eps, min.imag =
1e-09)
lWasymp(z,logz)
lambertW(z,...)
z |
(complex) vector of values for which to compute the function |
logz |
(complex (?)) vector of |
b |
(integer) b=0 specifies the principal branch, 0 and -1 are the ones that can take non-complex values |
maxiter |
maximum numbers of iterations for convergence |
eps |
convergence tolerance |
min.imag |
maximum magnitude of imaginary part to chop when returning solutions |
... |
arguments to pass to |
Compute the Lambert W function of z. This function satisfies
W(z)\exp(W(z))=z
, and can thus be used to express solutions
of transcendental equations involving exponentials or logarithms.
For z>10^307
, an asymptotic formula (from
Corless et al by way of
http://mathworld.wolfram.com/LambertW-Function.html)
is used: lambertW
is a wrapper that automatically selects
the asymptotic formula where appropriate.
In ecology, the Lambert W can be used to solve the so-called "Rogers equation" for predator functional response with depletion.
In epidemiology, the Lambert W function solves the final-size equation of a simple SIR epidemic model.
Complex or real vector of solutions.
This implementation should return values within 2.5*eps of its counterpart in Maple V, release 3 or later. Please report any discrepancies to the author or translator.
The derivative of the lambertW
function is plogis(-lambertW)
.
Nici Schraudolph <schraudo@inf.ethz.ch> (original version (c) 1998), Ben Bolker (R translation)
Corless, Gonnet, Hare, Jeffrey, and Knuth (1996), "On the Lambert W Function", Advances in Computational Mathematics 5(4):329-359
?Lambert
in the gsl
package by Robin Hankin,
which uses Gnu Scientific Library code; also ?lambertW
in the VGAM
and pracma
packages, and the lambertW
package
curve(lambertW(x),from=0,to=10)
pvec <- seq(-1,1,length=40)
m <- outer(pvec,pvec,function(x,y)Re(lambertW(x+y*1i)))
persp(pvec,pvec,m,
theta=290,shade=0.5,zlab="lambertW")
num1 <- uniroot(function(x) {x*exp(x)-1},lower=0,upper=1,tol=1e-9)
abs(lambertW(1)-num1$root)<1e-9
###
## Rogers random predator equation:
rogers.pred <- function(N0,a,h,T) {
N0 - lambertW(a*h*N0*exp(-a*(T-h*N0)))/(a*h)
}
holling2.pred <- function(N0,a,h) {
a*N0/(1+a*h*N0)
}
curve(rogers.pred(x,a=1,h=0.2,T=1),from=0,to=60,
ylab="Number eaten/unit time",xlab="Initial number",ylim=c(0,5),
main="Predation: a=1, h=0.2")
curve(rogers.pred(x,a=1,h=0.2,T=5)/5,add=TRUE,lty=2,from=0)
curve(rogers.pred(x,a=1,h=0.2,T=0.2)*5,add=TRUE,lty=3,from=0)
curve(rogers.pred(x,a=1,h=0.2,T=10)/10,add=TRUE,lty=4,from=0)
curve(holling2.pred(x,a=1,h=0.2),add=TRUE,lty=1,lwd=2,from=0)
abline(h=5)
legend(30,2,
c(paste("Rogers, T=",c(0.2,1,5,10),sep=""),
"Holling type II"),lwd=c(rep(1,4),2),lty=c(3,1,2,4,1))
## final size of an epidemic
finalsize <- function(R0) {
1+1/R0*lambertW(-R0*exp(-R0))
}
curve(finalsize,from=1,to=10,xlab=expression(R[0]),ylab="Final size")
## comparison of asymptotic results
tmpf <- function(x) {
L0 <- lambertW_base(10^x)
L1 <- lWasymp(logz=x*log(10))
(L1-L0)/L0
}
curve(tmpf,from=1,to=307,log="y")
## derivative
## don't run (avoid numDeriv dependency)
## require(numDeriv)
## grad(lambertW(1))
## plogis(-lambertW(1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.