Nothing
# Compare results of new functions with the
# Load aggregated data ---------------------------------------------------------
data("eusilcA_popAgg")
data("eusilcA_smpAgg")
eusilcA_smpAgg <- eusilcA_smpAgg[c(1:30, 35:70, 75:94), ]
# Combine sample and population data -------------------------------------------
combined_data <- combine_data(pop_data = eusilcA_popAgg, pop_domains = "Domain",
smp_data = eusilcA_smpAgg, smp_domains = "Domain")
fh_point_bt <- read.csv('FH/fh_backtransform_point.csv')
fh_mse_bt <- read.csv('FH/fh_backtransform_mse.csv')
test_that("Do the FH log backtransformations work?", {
fixed = Mean ~ eqsize + cash + self_empl
vardir = "Var_Mean"
combined_data = combined_data
domains = "Domain"
interval = c(0, 0.1518748)
transformation = "log"
eff_smpsize = NULL
method = "ml"
correlation = 'no'
corMatrix = NULL
Ci = NULL
tol = NULL
maxit = NULL
MSE = TRUE
# Single elements needed in optimal_parameter()
framework <- framework_FH(combined_data = combined_data, fixed = fixed,
vardir = vardir, domains = domains,
transformation = transformation,
eff_smpsize = eff_smpsize, correlation = correlation,
corMatrix = corMatrix, Ci = Ci, tol = tol,
maxit = maxit)
sigmau2 <- wrapper_estsigmau2(framework = framework, method = method,
interval = interval)
expect_equal(round(sigmau2, 6), 0.008423)
# Why is the result rounded? Where do we do this?
sigmau2 <- 0.008423
eblup <- eblup_FH(framework = framework, sigmau2 = sigmau2,
combined_data = combined_data)
log_bt_crude <- log_bt(framework, sigmau2, combined_data, eblup = eblup,
method, MSE, backtransformation = 'bc_crude')
log_bt_sm <- log_bt(framework, sigmau2, combined_data, eblup = eblup,
method, MSE, backtransformation = 'bc_sm')
expect_equal(fh_point_bt$log_crude, log_bt_crude$point_backtransformed)
expect_equal(fh_point_bt$log_sm, log_bt_sm$point_backtransformed)
expect_equal(fh_mse_bt$log_crude, log_bt_crude$mse_backtransformed)
expect_equal(fh_mse_bt$log_sm, log_bt_sm$mse_backtransformed)
})
test_that("Do the FH arcsin backtransformations work?", {
fixed = MTMED ~ eqsize + cash + self_empl
vardir = "Var_MTMED"
combined_data = combined_data
domains = "Domain"
interval = c(0, 0.1124019)
transformation = "arcsin"
eff_smpsize = "n"
method = "ml"
correlation = 'no'
corMatrix = NULL
Ci = NULL
tol = NULL
maxit = NULL
MSE = TRUE
B = 20
# Single elements needed in optimal_parameter()
framework <- framework_FH(combined_data = combined_data, fixed = fixed,
vardir = vardir, domains = domains,
transformation = transformation,
eff_smpsize = eff_smpsize, correlation = correlation,
corMatrix = corMatrix, Ci = Ci, tol = tol,
maxit = maxit)
sigmau2 <- wrapper_estsigmau2(framework = framework, method = method,
interval = interval)
eblup <- eblup_FH(framework = framework, sigmau2 = sigmau2,
combined_data = combined_data)
arcsin_naive_jk <- arcsin_bt(sigmau2 = sigmau2, combined_data = combined_data,
framework = framework, eblup = eblup, vardir = vardir,
mse_type = 'jackknife',
method = method, interval = interval, MSE = MSE,
B = B, backtransformation = 'naive')
set.seed(123)
arcsin_naive_boot <- arcsin_bt(sigmau2 = sigmau2, combined_data = combined_data,
framework = framework, eblup = eblup, vardir = vardir,
mse_type = 'boot',
method = method, interval = interval, MSE = MSE,
B = B, backtransformation = 'naive')
set.seed(123)
arcsin_bc_boot <- arcsin_bt(sigmau2 = sigmau2, combined_data = combined_data,
framework = framework, eblup = eblup, vardir = vardir,
mse_type = 'boot',
method = method, interval = interval, MSE = MSE,
B = B, backtransformation = 'bc')
expect_equal(fh_point_bt$arcsin_naive_jk, arcsin_naive_jk$point_backtransformed)
expect_equal(fh_point_bt$arcsin_naive_boot, arcsin_naive_boot$point_backtransformed)
expect_equal(fh_point_bt$arcsin_bc_boot, arcsin_bc_boot$point_backtransformed)
expect_equal(fh_mse_bt$arcsin_naive_jk, arcsin_naive_jk$mse_backtransformed)
expect_equal(fh_mse_bt$arcsin_naive_boot, arcsin_naive_boot$mse_backtransformed)
expect_equal(fh_mse_bt$arcsin_bc_boot, arcsin_bc_boot$mse_backtransformed)
})
test_that("Do the FH logit backtransformations work?", {
fixed = MTMED ~ eqsize + cash + self_empl
vardir = "Var_MTMED"
combined_data = combined_data
domains = "Domain"
interval = c(0, 0.1124019)
transformation = "logit"
eff_smpsize = "n"
method = "ml"
correlation = 'no'
corMatrix = NULL
Ci = NULL
tol = NULL
maxit = NULL
MSE = TRUE
B = 20
# Single elements needed in optimal_parameter()
framework <- framework_FH(combined_data = combined_data, fixed = fixed,
vardir = vardir, domains = domains,
transformation = transformation,
eff_smpsize = eff_smpsize, correlation = correlation,
corMatrix = corMatrix, Ci = Ci, tol = tol,
maxit = maxit)
sigmau2 <- wrapper_estsigmau2(framework = framework, method = method,
interval = interval)
eblup <- eblup_FH(framework = framework, sigmau2 = sigmau2,
combined_data = combined_data)
set.seed(123)
logit_naive_boot <- arcsin_bt(sigmau2 = sigmau2, combined_data = combined_data,
framework = framework, eblup = eblup, vardir = vardir,
mse_type = 'boot',
method = method, interval = interval, MSE = MSE,
B = B, backtransformation = 'naive')
set.seed(123)
logit_bc_boot <- arcsin_bt(sigmau2 = sigmau2, combined_data = combined_data,
framework = framework, eblup = eblup, vardir = vardir,
mse_type = 'boot',
method = method, interval = interval, MSE = MSE,
B = B, backtransformation = 'bc')
expect_equal(round(sigmau2, 7), 0.1123531)
expect_equal(fh_point_bt$logit_naive_boot, logit_naive_boot$point_backtransformed)
expect_equal(fh_point_bt$logit_bc_boot, logit_bc_boot$point_backtransformed)
expect_equal(fh_mse_bt$logit_naive_boot, logit_naive_boot$mse_backtransformed)
expect_equal(fh_mse_bt$logit_bc_boot, logit_bc_boot$mse_backtransformed)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.