Nothing
#' Weighted True Skill Statistic (TSS)
#'
#' This function calculates the True Skill Statistic (TSS).
#' @param pres Numeric vector. Predicted values at test presences
#' @param contrast Numeric vector. Predicted values at background/absence sites.
#' @param presWeight Numeric vector same length as \code{pres}. Relative weights of presence sites. The default is to assign each presence a weight of 1.
#' @param contrastWeight Numeric vector same length as \code{contrast}. Relative weights of background sites. The default is to assign each presence a weight of 1.
#' @param thresholds Numeric vector. Thresholds at which to calculate the sum of sensitivity and specificity. The default evaluates all values from 0 to 1 in steps of 0.01.
#' @param na.rm Logical. If \code{TRUE} then remove any presences and associated weights and background predictions and associated weights with \code{NA}s.
#' @param ... Other arguments (unused).
#' @return Numeric value.
#' @details This function calculates the maximum value of the True Skill Statistic (i.e., across all thresholds, the values that maximizes sensitivity plus specificity).
#' @references See Allouche, O., Tsoar, A., and Kadmon, R. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). \emph{Journal of Applied Ecology} 43:1223-1232. \doi{10.1111/j.1365-2664.2006.01214.x}
#'
#' @seealso \code{\link[predicts]{pa_evaluate}}, \code{\link{evalAUC}}, \code{\link{evalMultiAUC}}, \code{\link{evalContBoyce}}, \code{\link{evalThreshold}}, \code{\link{evalThresholdStats}}, \code{\link{evalTjursR2}}
#'
#' @examples
#' set.seed(123)
#'
#' # set of bad and good predictions at presences
#' bad <- runif(30)^2
#' good <- runif(30)^0.1
#' hist(good, breaks=seq(0, 1, by=0.1), border='green', main='Presences')
#' hist(bad, breaks=seq(0, 1, by=0.1), border='red', add=TRUE)
#' pres <- c(bad, good)
#' contrast <- runif(1000)
#' evalTSS(pres, contrast)
#'
#' # upweight bad predictions
#' presWeight <- c(rep(1, 30), rep(0.1, 30))
#' evalTSS(pres, contrast, presWeight=presWeight)
#'
#' # upweight good predictions
#' presWeight <- c(rep(0.1, 30), rep(1, 30))
#' evalTSS(pres, contrast, presWeight=presWeight)
#'
#' @export
evalTSS <- function(
pres,
contrast,
presWeight = rep(1, length(pres)),
contrastWeight = rep(1, length(contrast)),
thresholds = seq(0, 1, by=0.001),
na.rm = FALSE,
...
) {
# if all NAs
if (all(is.na(pres)) | all(is.na(contrast)) | all(is.na(presWeight)) | all(is.na(contrastWeight))) return(NA)
# catch errors
if (length(presWeight) != length(pres)) stop('You must have the same number of presence predictions and presence weights ("pres" and "presWeight").')
if (length(contrastWeight) != length(contrast)) stop('You must have the same number of absence/background predictions and absence/background weights ("contrast" and "contrastWeight").')
# remove NAs
if (na.rm) {
cleanedPres <- omnibus::naOmitMulti(pres, presWeight)
pres <- cleanedPres[[1]]
presWeight <- cleanedPres[[2]]
cleanedContrast <- omnibus::naOmitMulti(contrast, contrastWeight)
contrast <- cleanedContrast[[1]]
contrastWeight <- cleanedContrast[[2]]
}
# stats
sumPresWeights <- sum(presWeight)
sumContrastWeights <- sum(contrastWeight)
numPres <- length(pres)
numContrast <- length(contrast)
# TSS
tss <- rep(NA, length(thresholds))
# for each threshold
for (i in seq_along(thresholds)) {
thisThresh <- thresholds[i]
# which presences/contrast sites are correctly predicted at this threshold
whichCorrectPres <- which(pres >= thisThresh)
whichCorrectContrast <- which(contrast < thisThresh)
numCorrectPres <- length(whichCorrectPres)
numCorrectContrast <- length(whichCorrectContrast)
anyCorrectPres <- (numCorrectPres > 0)
anyCorrectContrast <- (numCorrectContrast > 0)
# weights of correctly predicted predictions
correctPresWeights <- if (anyCorrectPres) {
sum(presWeight[whichCorrectPres])
} else {
0
}
correctContrastWeights <- if (anyCorrectContrast) {
sum(contrastWeight[whichCorrectContrast])
} else {
0
}
# true positive/negative rates
tpr <- correctPresWeights / sumPresWeights
tnr <- correctContrastWeights / sumContrastWeights
tss[i] <- tpr + tnr - 1
}
thresholdMaxTss <- thresholds[which.max(tss)]
tss <- max(tss)
attr(tss, 'thresholdMaxTss') <- thresholdMaxTss
tss
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.