IPCC_RCP8_5: IPCC RCP8.5 scenario

Description Usage Arguments Details Value References Examples

View source: R/IPCC_RCP8_5.R

Description

This function allows simulating the effect of an increase in environmental temperature according to the IPCC RCP8.5 scenario (2014) on the abundance of ectotherm populations.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
IPCC_RCP8_5(
  y_ini = c(N = 400, N = 400, N = 400),
  temp_ini = rep(20, 3),
  temp_cmin = rep(18, 3),
  temp_cmax = c(25, 28, 30),
  ro = rep(0.7, 3),
  lambda = rep(5e-05, 3),
  time_start = 2005,
  time_end = 2100,
  leap = 1/12
)

Arguments

y_ini

Initial population values (must be written with its name: N).

temp_ini

Initial temperature.

temp_cmin

Minimum critical temperature.

temp_cmax

Maximum critical temperature.

ro

Population growth rate at optimum temperature.

lambda

Marginal loss by non-thermodependent intraspecific competition.

time_start

Start of time sequence.

time_end

End of time sequence.

leap

Time sequence step.

Details

Three populations can be simulated simultaneously. The temperature trend is determined by a projection of the change in global mean surface temperature according to the IPCC RCP8.5 scenario. In each input vector, the parameters for the three simulations must be specified (finite numbers for initial population abundance). The simulations are obtained by a model that incorporates the effects of temperature over time, which leads to a non-autonomous ODE approach. This is function uses the ODE solver implemented in the package deSolve (Soetaert et al., 2010).

Value

(1) A data.frame with columns having the simulated trends.

(2) A two-panel figure in which (a) shows the population abundance curves represented by solid lines and the corresponding carrying capacities are represented by shaded areas. In (b) the temperature trend is shown. The three simultaneous simulations are depicted by different colors, i.e. 1st brown, 2nd green and 3rd blue.

References

IPCC. (2014): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Soetaert, K., Petzoldt, T., & Setzer, R. (2010). Solving Differential Equations in R: Package deSolve. Journal of Statistical Software, 33(9), 1 - 25. doi:http://dx.doi.org/10.18637/jss.v033.i09

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#######################################################################
  #Example 1: Different initial population abundances.
#######################################################################

IPCC_RCP8_5(y_ini = c(N = 100, N = 200, N = 400),
           temp_ini = rep(26,3),
           temp_cmin = rep(18,3),
           temp_cmax = rep(30,3),
           ro = rep(0.7,3),
           lambda = rep(0.00005,3),
           time_start = 2005,
           time_end = 2100,
           leap = 1/12)

#######################################################################
  #Example 2: Different thermal tolerance ranges.
#######################################################################

temp_cmin3 <- 18
temp_cmin2 <- 10/9*temp_cmin3
temp_cmin1 <- 10/9*temp_cmin2

temp_cmax1 <- 32.4
temp_cmax2 <- 10/9*temp_cmax1
temp_cmax3 <- 10/9*temp_cmax2

IPCC_RCP8_5(y_ini = c(N = 100, N = 100, N = 100),
           temp_ini = rep(30,3),
           temp_cmin = c(temp_cmin1,temp_cmin2,temp_cmin3),
           temp_cmax = c(temp_cmax1,temp_cmax2,temp_cmax3),
           ro = rep(0.7,3),
           lambda = rep(0.00005,3),
           time_start = 2005,
           time_end = 2100,
           leap = 1/12)

#######################################################################
  #Example 3: Different relationships between initial environmental
  #           temperature and optimum temperature.
#######################################################################

temp_cmin <- 18
temp_cmax <- 30

# Temperature at which performance is at its maximum value.
temp_op <- (temp_cmax+temp_cmin)/3+sqrt(((temp_cmax+temp_cmin)/3)^2-
           (temp_cmax*temp_cmin)/3)

temp_ini1 <- (temp_cmin+temp_op)/2
temp_ini2 <- temp_op
temp_ini3 <- (temp_op+temp_cmax)/2

IPCC_RCP8_5(y_ini = c(N = 100, N = 100, N = 100),
           temp_ini = c(temp_ini1,temp_ini2,temp_ini3),
           temp_cmin = rep(temp_cmin,3),
           temp_cmax = rep(temp_cmax,3),
           ro = rep(0.7,3),
           lambda = rep(0.00005,3),
           time_start = 2005,
           time_end = 2100,
           leap = 1/12)

#######################################################################
  #Example 4:  Different marginal losses by a non-thermodependent
  #            component of intraspecific competition.
#######################################################################

lambda3 <- 0.01
lambda2 <- 1/2*lambda3
lambda1 <- 1/2*lambda2

IPCC_RCP8_5(y_ini = c(N = 100, N = 100,N = 100),
           temp_cmin = rep(18,3),
           temp_ini = rep(25,3),
           temp_cmax = rep(30,3),
           ro = rep(0.7,3),
           lambda = c(lambda1,lambda2,lambda3),
           time_start = 2005,
           time_end = 2100,
           leap = 1/12)

epcc documentation built on June 29, 2021, 9:07 a.m.