Description Usage Arguments Details Value References Examples
This function allows simulating the effect of increasing variable temperature trend on the abundance of ectotherm populations.
1 2 3 4 5 6 7 8 9 10 11 12 13 |
y_ini |
Initial population values (must be written with its name: N). |
temp_ini |
Initial temperature. |
temp_cmin |
Minimum critical temperature. |
temp_cmax |
Maximum critical temperature. |
ro |
Population growth rate at optimum temperature. |
lambda |
Marginal loss by non-thermodependent intraspecific competition. |
mean |
Average noise. |
sd |
Standard deviation of noise. |
time_start |
Start of time sequence. |
time_end |
End of time sequence. |
leap |
Time sequence step. |
Three populations and/or scenarios can be simulated simultaneously. The temperature trend considers the IPCC RCP8.5 but adding random noise following a normal distribution, which is characterized by the mean and standard deviation. In each input vector, the parameters for the three simulations must be specified (finite numbers for the initial population abundance). The simulations are obtained by a model that incorporates the effects of temperature over time, which leads to a non-autonomous ODE approach. This is function uses the ODE solver implemented in the package deSolve (Soetaert et al., 2010).
(1) A data.frame with columns having the simulated trends.
(2) A two-panel figure in which (a) shows the population abundance curves represented by solid lines and the corresponding carrying capacities are represented by shaded areas. In (b) the temperature trend is shown. The three simultaneous simulations are depicted by different colors, i.e. 1st brown, 2nd green and 3rd blue.
Soetaert, K., Petzoldt, T., & Setzer, R. (2010). Solving Differential Equations in R: Package deSolve. Journal of Statistical Software, 33(9), 1 - 25. doi:http://dx.doi.org/10.18637/jss.v033.i09
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | #######################################################################
#Example 1: Different initial population abundances.
#######################################################################
variability(y_ini = c(N = 100, N = 200, N = 400),
temp_ini = rep(22,3),
temp_cmin = rep(18,3),
temp_cmax = rep(35,3),
ro = rep(0.7,3),
lambda = rep(0.00005,3),
mean = rep(2,3),
sd = rep(3,3),
time_start = 2005,
time_end = 2100,
leap = 1/12)
#######################################################################
#Example 2: Different thermal tolerance ranges.
#######################################################################
temp_cmin3 <- 18
temp_cmin2 <- 10/9*temp_cmin3
temp_cmin1 <- 10/9*temp_cmin2
temp_cmax1 <- 32.4
temp_cmax2 <- 10/9*temp_cmax1
temp_cmax3 <- 10/9*temp_cmax2
variability(y_ini = c(N = 100, N = 100, N = 100),
temp_ini = rep(26,3),
temp_cmin = c(temp_cmin1,temp_cmin2,temp_cmin3),
temp_cmax = c(temp_cmax1,temp_cmax2,temp_cmax3),
ro = rep(0.7,3),
lambda = rep(0.00005,3),
mean = rep(2,3),
sd = rep(2,3),
time_start = 2005,
time_end = 2100,
leap = 1/12)
#######################################################################
#Example 3: Different relationships between initial environmental
# temperature and optimum temperature.
#######################################################################
temp_cmin <- 18
temp_cmax <- 40
# Temperature at which performance is at its maximum value.
temp_op <- (temp_cmax+temp_cmin)/3+sqrt(((temp_cmax+temp_cmin)/3)^2-
(temp_cmax*temp_cmin)/3)
temp_ini1 <- (temp_cmin+temp_op)/2
temp_ini2 <- temp_op
temp_ini3 <- (temp_op+temp_cmax)/2
variability(y_ini = c(N = 100, N = 100, N = 100),
temp_ini = c(temp_ini1,temp_ini2,temp_ini3),
temp_cmin = rep(temp_cmin,3),
temp_cmax = rep(temp_cmax,3),
ro = rep(0.7,3),
lambda = rep(0.00005,3),
mean = rep(1,3),
sd = rep(0.5,3),
time_start = 2005,
time_end = 2100,
leap = 1/12)
#######################################################################
#Example 4: Different marginal losses by a non-thermodependent
# component of intraspecific competition.
#######################################################################
lambda3 <- 0.01
lambda2 <- 1/2*lambda3
lambda1 <- 1/2*lambda2
variability(y_ini = c(N = 100, N = 100, N = 100),
temp_ini = rep(26,3),
temp_cmin = rep(18,3),
temp_cmax = rep(35,3),
ro = rep(0.7,3),
lambda = c(lambda1,lambda2,lambda3),
mean = rep(1,3),
sd = rep(2,3),
time_start = 2005,
time_end = 2100,
leap = 1/12)
#######################################################################
#Example 5: Different noise means.
#######################################################################
mean3 <- 2
mean2 <- 1/2*mean3
mean1 <- 1/2*mean2
variability(y_ini = c(N = 100, N = 100, N = 100),
temp_ini = rep(22,3),
temp_cmin = rep(18,3),
temp_cmax = rep(35,3),
ro = rep(0.7,3),
lambda = rep(0.00005,3),
mean = c(mean1,mean2,mean3),
sd = rep(2,3),
time_start = 2005,
time_end = 2100,
leap = 1/12)
#######################################################################
#Example 6: Different noise standard deviations.
#######################################################################
sd3 <- 4
sd2 <- 1/2*sd3
sd1 <- 1/2*sd2
variability(y_ini = c(N = 100, N = 100, N = 100),
temp_ini = rep(22,3),
temp_cmin = rep(18,3),
temp_cmax = rep(35,3),
ro = rep(0.7,3),
lambda = rep(0.00005,3),
mean = rep(3,3),
sd = c(sd1,sd2,sd3),
time_start = 2005,
time_end = 2100,
leap = 1/12)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.