Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(epiparameter)
## -----------------------------------------------------------------------------
convert_params_to_summary_stats("gamma", shape = 2.5, scale = 1.5)
## -----------------------------------------------------------------------------
convert_summary_stats_to_params("gamma", mean = 2, sd = 2)
convert_summary_stats_to_params("gamma", mean = 2, var = 2)
convert_summary_stats_to_params("gamma", mean = 2, cv = 2)
## -----------------------------------------------------------------------------
ep <- epiparameter(
disease = "<Disease name>",
pathogen = "<Pathogen name>",
epi_name = "<Epidemilogical Distribution name>",
prob_distribution = create_prob_distribution(
prob_distribution = "gamma",
prob_distribution_params = c(shape = 2.5, scale = 1.5)
)
)
convert_params_to_summary_stats(ep)
## -----------------------------------------------------------------------------
ep <- epiparameter(
disease = "<Disease name>",
pathogen = "<Pathogen name>",
epi_name = "<Epidemilogical Distribution name>",
prob_distribution = "gamma"
)
convert_params_to_summary_stats(ep, shape = 2.5, scale = 1.5)
## -----------------------------------------------------------------------------
ep <- epiparameter(
disease = "<Disease name>",
pathogen = "<Pathogen name>",
epi_name = "<Epidemilogical Distribution name>",
prob_distribution = "gamma",
summary_stats = create_summary_stats(mean = 3.75, sd = 2.37)
)
convert_summary_stats_to_params(ep)
## -----------------------------------------------------------------------------
ep <- epiparameter(
disease = "<Disease name>",
pathogen = "<Pathogen name>",
epi_name = "<Epidemilogical Distribution name>",
prob_distribution = "gamma"
)
convert_summary_stats_to_params(ep, mean = 3.75, sd = 2.37)
## -----------------------------------------------------------------------------
convert_params_to_summary_stats("lnorm", meanlog = 2.5, sdlog = 1.5)
## -----------------------------------------------------------------------------
convert_summary_stats_to_params("lnorm", mean = 2, sd = 2)
convert_summary_stats_to_params("lnorm", mean = 2, var = 2)
convert_summary_stats_to_params("lnorm", mean = 2, cv = 2)
convert_summary_stats_to_params("lnorm", median = 2, sd = 2)
convert_summary_stats_to_params("lnorm", median = 2, var = 2)
## -----------------------------------------------------------------------------
convert_params_to_summary_stats("weibull", shape = 2.5, scale = 1.5)
## -----------------------------------------------------------------------------
convert_summary_stats_to_params("weibull", mean = 2, sd = 2)
convert_summary_stats_to_params("weibull", mean = 2, var = 2)
convert_summary_stats_to_params("weibull", mean = 2, cv = 2)
## -----------------------------------------------------------------------------
convert_params_to_summary_stats("nbinom", prob = 0.5, dispersion = 0.5)
## -----------------------------------------------------------------------------
convert_summary_stats_to_params("nbinom", mean = 1, sd = 1)
convert_summary_stats_to_params("nbinom", mean = 1, var = 1)
convert_summary_stats_to_params("nbinom", mean = 1, cv = 1)
## -----------------------------------------------------------------------------
convert_params_to_summary_stats("geom", prob = 0.5)
## -----------------------------------------------------------------------------
convert_summary_stats_to_params("geom", mean = 1)
## -----------------------------------------------------------------------------
extract_param(
type = "percentiles",
values = c(1, 10),
distribution = "gamma",
percentiles = c(0.025, 0.975)
)
## -----------------------------------------------------------------------------
extract_param(
type = "range",
values = c(10, 5, 15),
distribution = "lnorm",
samples = 25
)
## -----------------------------------------------------------------------------
# set seed to ensure warning is produced
set.seed(1)
# lower maximum iteration to show warning
extract_param(
type = "range",
values = c(10, 1, 25),
distribution = "lnorm",
samples = 100,
control = list(max_iter = 100)
)
## ----extract_param for monkeypox percentiles----------------------------------
# Mpox lnorm from 75th percentiles in WHO data
extract_param(
type = "percentiles",
values = c(6, 13),
distribution = "lnorm",
percentiles = c(0.125, 0.875)
)
## ----extract_param for monkeypox median and range-----------------------------
# Mpox lnorm from median and range in 2022:
extract_param(
type = "range",
values = c(7, 3, 20),
distribution = "lnorm",
samples = 23
)
## ----convert parameters-------------------------------------------------------
# SARS gamma mean and var to shape and scale
convert_summary_stats_to_params("gamma", mean = 6.37, var = 16.7)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.