Nothing
test_that("get_parameters works as expected for epiparameter from db", {
# suppress message about return
ep <- suppressMessages(epiparameter_db(disease = "SARS", single_epiparameter = TRUE))
params <- get_parameters(ep)
expect_vector(params, ptype = numeric(1), size = 2)
expect_named(params, c("meanlog", "sdlog"))
})
test_that("get_parameters works as expected for unparameterised epiparameter", {
ep <- suppressMessages(
epiparameter(
disease = "Ebola",
epi_name = "incubation period",
prob_distribution = create_prob_distribution(prob_distribution = "gamma")
)
)
expect_true(is.na(get_parameters(ep)))
})
test_that("get_parameters works as expected for continuous epiparameter", {
ep <- suppressMessages(
epiparameter(
disease = "Ebola",
epi_name = "incubation period",
prob_distribution = create_prob_distribution(
prob_distribution = "gamma",
prob_distribution_params = c(shape = 1, scale = 1)
)
)
)
params <- get_parameters(ep)
expect_vector(params, ptype = numeric(1), size = 2)
expect_named(params, c("shape", "scale"))
})
test_that("get_parameters works as expected for discretised epiparameter", {
ep <- suppressMessages(
epiparameter(
disease = "Ebola",
epi_name = "incubation period",
prob_distribution = create_prob_distribution(
prob_distribution = "gamma",
prob_distribution_params = c(shape = 1, scale = 1),
discretise = TRUE
)
)
)
params <- get_parameters(ep)
expect_vector(params, ptype = numeric(1), size = 2)
expect_named(params, c("shape", "scale"))
})
test_that("get_citation works as expected for epiparameter from db", {
# suppress message about return
db <- suppressMessages(epiparameter_db())
citation <- get_citation(db)
expect_type(citation, "list")
expect_length(citation, length(db))
})
test_that("get_citation works as expected for one entry from db", {
ep <- suppressMessages(epiparameter_db(single_epiparameter = TRUE))
citation <- get_citation(ep)
expect_s3_class(citation, "bibentry")
})
test_that("get_citation works as expected for manual epiparameter", {
# suppress message about citation
ep <- suppressMessages(
epiparameter(
disease = "ebola",
epi_name = "incubation_period",
prob_distribution = create_prob_distribution(
prob_distribution = "gamma",
prob_distribution_params = c(shape = 1, scale = 1)
),
citation = create_citation(
author = person(given = "John F.", family = "Smith"),
year = 2000,
title = "Incubation period of COVID",
journal = "Journal of Epi",
doi = "10.19832/j.1366-9516.2012.09147.x"
)
)
)
expect_s3_class(get_citation(ep), "bibentry")
})
test_that("get_citation works as expected for epiparameter missing citation", {
# suppress message about citation
ep <- suppressMessages(
epiparameter(
disease = "ebola",
epi_name = "incubation_period",
prob_distribution = create_prob_distribution(
prob_distribution = "gamma",
prob_distribution_params = c(shape = 1, scale = 1)
)
)
)
citation <- get_citation(ep)
expect_s3_class(citation, "bibentry")
expect_null(citation$year)
expect_identical(citation$title, "No citation")
})
test_that("get_citation works as expected for non-bibentry citation", {
# suppress message about citation
ep <- suppressMessages(
epiparameter_db(single_epiparameter = TRUE)
)
ep$citation <- "WHO-Ebola-Response-Team (2015) NEJM"
expect_error(get_citation(ep), regexp = "Citation should be a <bibentry>")
})
test_that("get_citation produces warnings with extra arguments", {
# suppress message about citation
ep <- suppressMessages(
epiparameter_db(single_epiparameter = TRUE)
)
expect_warning(
get_citation(ep, extra_arg = "args"),
regexp = "(extra argument)*(will be disregarded)"
)
})
test_that(".distributional_family works as expected for untransformed", {
ep <- suppressMessages(
epiparameter_db(
disease = "Ebola",
epi_name = "serial interval",
single_epiparameter = TRUE
)
)
expect_identical(.distributional_family(ep$prob_distribution), "gamma")
})
test_that(".distributional_family works as expected for transformed", {
ebola_si <- suppressMessages(
epiparameter_db(disease = "Ebola", epi_name = "serial interval")
)
ep <- aggregate(ebola_si)
expect_identical(
.distributional_family(ep$prob_distribution),
rep("gamma", times = length(ebola_si))
)
incub <- suppressMessages(
epiparameter_db(
epi_name = "incubation period",
subset = is_parameterised
)
)
incub <- suppressMessages(
epiparameter_db(
disease = "Mpox",
epi_name = "incubation period",
subset = is_parameterised
)
)
ep <- aggregate(incub)
expect_identical(
.distributional_family(ep$prob_distribution),
c(rep("lnorm", 2), "gamma", rep("lnorm", 2))
)
ep <- epiparameter(
disease = "Ebola",
epi_name = "SI",
prob_distribution = create_prob_distribution(
prob_distribution = "lnorm",
prob_distribution_params = c(meanlog = 2, sdlog = 2),
truncation = 10
)
)
expect_identical(.distributional_family(ep$prob_distribution), "lnorm")
expect_identical(
.distributional_family(ep$prob_distribution, base_dist = FALSE),
"truncated"
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.