nodal_attributes-API | R Documentation |
These functions are meant to be used in EgoStat
and other
implementations to provide the user with a way to extract nodal attributes
and select their levels in standardized and flexible ways. They are
intended to parallel ergm::nodal_attributes-API
.
ergm.ego_get_vattr
extracts and processes the specified
nodal attribute vector. It is strongly recommended that
check.ErgmTerm()
's corresponding
vartype="function,formula,character"
(using the
ERGM_VATTR_SPEC
constant).
ergm.ego_attr_levels
filters the levels of the
attribute. It is strongly recommended that check.ErgmTerm()
's
corresponding
vartype="function,formula,character,numeric,logical,AsIs,NULL"
(using the
ERGM_LEVELS_SPEC
constant).
ergm.ego_get_vattr(
object,
df,
accept = "character",
multiple = if (accept == "character") "paste" else "stop",
...
)
## S3 method for class 'character'
ergm.ego_get_vattr(
object,
df,
accept = "character",
multiple = if (accept == "character") "paste" else "stop",
...
)
## S3 method for class ''function''
ergm.ego_get_vattr(
object,
df,
accept = "character",
multiple = if (accept == "character") "paste" else "stop",
...
)
## S3 method for class 'formula'
ergm.ego_get_vattr(
object,
df,
accept = "character",
multiple = if (accept == "character") "paste" else "stop",
...
)
ergm.ego_attr_levels(object, attr, egor, levels = sort(unique(attr)), ...)
## S3 method for class 'numeric'
ergm.ego_attr_levels(object, attr, egor, levels = sort(unique(attr)), ...)
## S3 method for class 'logical'
ergm.ego_attr_levels(object, attr, egor, levels = sort(unique(attr)), ...)
## S3 method for class 'AsIs'
ergm.ego_attr_levels(object, attr, egor, levels = sort(unique(attr)), ...)
## S3 method for class 'character'
ergm.ego_attr_levels(object, attr, egor, levels = sort(unique(attr)), ...)
## S3 method for class ''NULL''
ergm.ego_attr_levels(object, attr, egor, levels = sort(unique(attr)), ...)
## S3 method for class 'matrix'
ergm.ego_attr_levels(object, attr, egor, levels = sort(unique(attr)), ...)
## S3 method for class ''function''
ergm.ego_attr_levels(object, attr, egor, levels = sort(unique(attr)), ...)
## S3 method for class 'formula'
ergm.ego_attr_levels(object, attr, egor, levels = sort(unique(attr)), ...)
COLLAPSE_SMALLEST(object, n, into)
object |
An argument specifying the nodal attribute to select or which levels to include. |
df |
Table of egos or of alters. |
accept |
A character vector listing permitted data types for the output. See the Details section for the specification. |
multiple |
Handling of multiple attributes or matrix or data frame output. See the Details section for the specification. |
... |
Additional argument to the functions of network or to the formula's environment. |
attr |
A vector of length equal to the number of nodes, specifying the attribute vector. |
egor |
An |
levels |
Starting set of levels to use; defaults to the sorted list of unique attributes. |
n , into |
see |
The accept
argument is meant to allow the user to
quickly check whether the output is of an acceptable class or
mode. Typically, if a term accepts a character (i.e.,
categorical) attribute, it will also accept a numeric one,
treating each number as a category label. For this reason, the
following outputs are defined:
"character"
Accept any mode or class (since it can be converted to character).
"numeric"
Accept real, integer, or logical.
"logical"
Accept logical.
"integer"
Accept integer or logical.
"natural"
Accept a strictly positive integer.
"0natural"
Accept a nonnegative integer or logical.
"nonnegative"
Accept a nonnegative number or logical.
"positive"
Accept a strictly positive number or logical.
"index"
Mentioned here for completeness, it does not make sense for egocentric data (since networks are constructed) and so is not supported.
Given that, the multiple
argument controls how passing multiple
attributes or functions that result in vectors of appropriate
dimension are handled:
"paste"
Paste together with dot as the separator.
"stop"
Fail with an error message.
"matrix"
Construct and/or return a matrix whose rows correspond to vertices.
ergm.ego_get_vattr
returns a vector of length equal to the
number of nodes giving the selected attribute function or, if
multiple="matrix"
, a matrix whose number of row equals the
number of nodes. Either may also have an attribute "name"
, which
controls the suggested name of the attribute combination.
ergm.ego_attr_levels
returns a vector of levels to use and their order.
COLLAPSE_SMALLEST()
: A version of ergm::COLLAPSE_SMALLEST()
that can handle both network
and egodata
objects.
ergm.ego_attr_levels.matrix()
expects levels=
to be a
list
with each element having length 2 and containing the
values of the two categorical attributes being crossed. It also
assumes that they are in the same order as the user would like
them in the matrix.
data(florentine)
flomego <- as.egor(flomarriage)
ergm.ego_get_vattr("priorates", flomego)
ergm.ego_get_vattr(~priorates, flomego)
ergm.ego_get_vattr(~cbind(priorates, priorates^2), flomego, multiple="matrix")
ergm.ego_get_vattr(c("wealth","priorates"), flomego)
ergm.ego_get_vattr(c("wealth","priorates"), flomego, multiple="matrix")
ergm.ego_get_vattr(~priorates>30, flomego)
(a <- ergm.ego_get_vattr(~cut(priorates,c(-Inf,0,20,40,60,Inf),label=FALSE)-1, flomego))
ergm.ego_attr_levels(NULL, a, flomego)
ergm.ego_attr_levels(-1, a, flomego)
ergm.ego_attr_levels(1:2, a, flomego)
ergm.ego_attr_levels(I(1:2), a, flomego)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.