Nothing
test_that("Compare meta_mdiff_two to ESCI_Original_two_groups", {
# Comparisons are not perfect to ESCI due to difference in SE calculations
esci_test <- data.frame(
study_name = c("McCabe 1", "McCabe 2", paste("Michael", seq(1:10), sep = " ")),
nbM = c(2.89, 2.69, 2.90, 2.62, 2.96, 2.93, 2.86, 2.50, 2.41, 2.54, 2.73, 2.66),
nbS = c(0.79, 0.55, 0.58, 0.54, 0.36, 0.60, 0.59, 0.84, 0.78, 0.66, 0.67, 0.65),
nbN = c(28, 26, 98, 42, 24, 184, 274, 58, 34, 99, 98, 94),
bM = c(3.12, 3.00, 2.86, 2.85, 3.07, 2.89, 2.91, 2.60, 2.74, 2.72, 2.68, 2.64),
bS = c(0.65, 0.54, 0.61, 0.57, 0.55, 0.60, 0.52, 0.83, 0.51, 0.68, 0.69, 0.71),
bN = c(26, 28, 99, 33, 21, 184, 255, 55, 34, 95, 93, 97),
mod = as.factor(
c("Simple", "Critique", "Simple","Simple","Simple","Simple","Simple","Critique","Critique","Critique", "Critique","Critique")
),
ds = c(0.31217944, 0.56073138, -0.06693802, 0.41136192, 0.23581389, -0.06652995, 0.08958082, 0.11892778, 0.49506069, 0.26765910, -0.07326, -0.02925)
)
esci_test <- esci_test[1:10, ]
# Random effects
estimate <- esci::meta_mdiff_two(
data = esci_test,
comparison_means = bM,
comparison_sds = bS,
comparison_ns = bN,
reference_means = nbM,
reference_sds = nbS,
reference_ns = nbN,
labels = study_name,
effect_label = "Brain Photo Rating - No Brain Photo Rating",
assume_equal_variance = TRUE,
random_effects = TRUE
)
testthat::expect_s3_class(estimate, "esci_estimate")
testthat::expect_snapshot(estimate)
suppressWarnings(myplot <- esci::plot_meta(estimate))
testthat::expect_s3_class(myplot, "ggplot")
# Fixed effects
estimate_fe <- esci::meta_mdiff_two(
data = esci_test,
comparison_means = bM,
comparison_sds = bS,
comparison_ns = bN,
reference_means = nbM,
reference_sds = nbS,
reference_ns = nbN,
labels = study_name,
effect_label = "Brain Photo Rating - No Brain Photo Rating",
assume_equal_variance = TRUE,
random_effects = FALSE
)
testthat::expect_s3_class(estimate_fe, "esci_estimate")
testthat::expect_snapshot(estimate_fe)
suppressWarnings(myplot <- esci::plot_meta(estimate_fe))
testthat::expect_s3_class(myplot, "ggplot")
# Random effects with moderator
estimate_mod <- esci::meta_mdiff_two(
data = esci_test,
comparison_means = bM,
comparison_sds = bS,
comparison_ns = bN,
reference_means = nbM,
reference_sds = nbS,
reference_ns = nbN,
labels = study_name,
effect_label = "Brain Photo Rating - No Brain Photo Rating",
contrast = c(1, -1),
assume_equal_variance = TRUE,
moderator = mod,
random_effects = TRUE
)
testthat::expect_s3_class(estimate_mod, "esci_estimate")
testthat::expect_snapshot(estimate_mod)
suppressWarnings(myplot <- esci::plot_meta(estimate_mod))
testthat::expect_s3_class(myplot, "ggplot")
# Fixed effects with moderator
estimate_mod_fe <- esci::meta_mdiff_two(
data = esci_test,
comparison_means = bM,
comparison_sds = bS,
comparison_ns = bN,
reference_means = nbM,
reference_sds = nbS,
reference_ns = nbN,
labels = study_name,
effect_label = "Brain Photo Rating - No Brain Photo Rating",
contrast = c(1, -1),
assume_equal_variance = TRUE,
moderator = mod,
random_effects = FALSE
)
testthat::expect_s3_class(estimate_mod_fe, "esci_estimate")
testthat::expect_snapshot(estimate_mod_fe)
suppressWarnings(myplot <- esci::plot_meta(estimate_mod_fe))
testthat::expect_s3_class(myplot, "ggplot")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.