predict_tdl | R Documentation |
Predicts using the incomplete-event-classifier.
predict_tdl(model, t, X, probs = FALSE)
model |
The fitted incomplete-event-classifier. |
t |
The age of events. |
X |
The event features. |
probs |
If |
The predicted values using the model object. If prob = TRUE
, then the probabilities are returned.
# Generate data N <- 1000 t <- sort(rep(1:10, N)) set.seed(821) for(kk in 1:10){ if(kk==1){ X <- seq(-11,9,length=N) }else{ temp <- seq((-11-kk+1),(9-kk+1),length=N) X <- c(X,temp) } } real.a.0 <- seq(2,20, by=2) real.a.1 <- rep(2,10) Zstar <-real.a.0[t] + real.a.1[t]*X + rlogis(N, scale=0.5) Z <- 1*(Zstar > 0) # Plot data for t=1 and t=8 oldpar <- par(mfrow=c(1,2)) plot(X[t==1],Z[t==1], main="t=1 data") abline(v=-1, lty=2) plot(X[t==8],Z[t==8],main="t=8 data") abline(v=-8, lty=2) par(oldpar) # Fit model train_inds <- c() for(i in 0:9){train_inds <- c(train_inds , i*N + 2*(1:499))} model_td <- td_logistic(t[train_inds],X[train_inds],Z[train_inds]) # Prediction preds <- predict_tdl(model_td,t[-train_inds],X[-train_inds] ) sum(preds==Z[-train_inds])/length(preds)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.