View source: R/tune_event_detection.R
tune_cpdbee_2D | R Documentation |
This function finds best parameters for 2D event detection using labeled data.
tune_cpdbee_2D( x, cl, alpha_min = 0.95, alpha_max = 0.98, alpha_step = 0.01, epsilon_min = 2, epsilon_max = 12, epsilon_step = 2, minPts_min = 4, minPts_max = 12, minPts_step = 2 )
x |
The data in an mxn matrix or dataframe. |
cl |
The actual locations of the events. |
alpha_min |
The minimum threshold value. |
alpha_max |
The maximum threshold value. |
alpha_step |
The incremental step size for alpha. |
epsilon_min |
The minimum epsilon value for DBSCAN clustering. |
epsilon_max |
The maximum epsilon value for DBSCAN clustering. |
epsilon_step |
The incremental step size for epsilon for DBSCAN clustering. |
minPts_min |
The minimum minPts value for for DBSCAN clustering. |
minPts_max |
The maximum minPts value for for DBSCAN clustering. |
minPts_step |
The incremental step size for minPts for DBSCAN clustering. |
A list with following components
|
The best threshold, epsilon and MinPts for 2D event detection and the associated Jaccard Index. |
|
All parameter values used and the associated Jaccard Index values. |
## Not run: out <- gen_stream(1, sd=15) zz <- as.matrix(out$data) clst <- get_clusters(zz, filename = NULL, thres = 0.95, vis = TRUE, epsilon = 5, miniPts = 10, rolling = FALSE) clst_loc <- clst$data[ ,1:2] out <- tune_cpdbee_2D(zz, clst_loc) out$best ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.