| td_logistic | R Documentation | 
This function does classification of incomplete events. The events grow with time. The input vector t denotes the age of the event. The classifier takes the growing event features, X and combines with a L2 penalty for smoothness.
td_logistic( t, X, Y, lambda = 1, scale = TRUE, num_bins = 4, quad = TRUE, interact = FALSE, logg = TRUE )
| t | The age of events. | 
| X | The event features. | 
| Y | The class labels.  | 
| lambda | The penalty coefficient. Default is 1. | 
| scale | If  | 
| num_bins | The number of time slots to use. | 
| quad | If  | 
| interact | if  | 
| logg | If  | 
A list with following components:
|  | The parameters of the incomplete-event-classifier, after its fitted. | 
|  | The difference between the final two output values. | 
|  | If  | 
|  | The age of events  | 
|  | The value of  | 
|  | The value of  | 
predict_tdl for prediction.
# Generate data
N <- 1000
t <- sort(rep(1:10, N))
set.seed(821)
for(kk in 1:10){
  if(kk==1){
     X <- seq(-11,9,length=N)
  }else{
     temp <- seq((-11-kk+1),(9-kk+1),length=N)
     X <- c(X,temp)
  }
}
real.a.0 <- seq(2,20, by=2)
real.a.1 <- rep(2,10)
Zstar <-real.a.0[t] + real.a.1[t]*X + rlogis(N, scale=0.5)
Z <- 1*(Zstar > 0)
# Plot data for t=1 and t=8
oldpar <- par(mfrow=c(1,2))
plot(X[t==1],Z[t==1], main="t=1 data")
abline(v=-1, lty=2)
plot(X[t==8],Z[t==8],main="t=8 data")
abline(v=-8, lty=2)
par(oldpar) 
# Fit model
model_td <- td_logistic(t,X,Z)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.