td_logistic | R Documentation |
This function does classification of incomplete events. The events grow with time. The input vector t
denotes the age of the event. The classifier takes the growing event features, X
and combines with a L2
penalty for smoothness.
td_logistic( t, X, Y, lambda = 1, scale = TRUE, num_bins = 4, quad = TRUE, interact = FALSE, logg = TRUE )
t |
The age of events. |
X |
The event features. |
Y |
The class labels. |
lambda |
The penalty coefficient. Default is 1. |
scale |
If |
num_bins |
The number of time slots to use. |
quad |
If |
interact |
if |
logg |
If |
A list with following components:
|
The parameters of the incomplete-event-classifier, after its fitted. |
|
The difference between the final two output values. |
|
If |
|
The age of events |
|
The value of |
|
The value of |
predict_tdl
for prediction.
# Generate data N <- 1000 t <- sort(rep(1:10, N)) set.seed(821) for(kk in 1:10){ if(kk==1){ X <- seq(-11,9,length=N) }else{ temp <- seq((-11-kk+1),(9-kk+1),length=N) X <- c(X,temp) } } real.a.0 <- seq(2,20, by=2) real.a.1 <- rep(2,10) Zstar <-real.a.0[t] + real.a.1[t]*X + rlogis(N, scale=0.5) Z <- 1*(Zstar > 0) # Plot data for t=1 and t=8 oldpar <- par(mfrow=c(1,2)) plot(X[t==1],Z[t==1], main="t=1 data") abline(v=-1, lty=2) plot(X[t==8],Z[t==8],main="t=8 data") abline(v=-8, lty=2) par(oldpar) # Fit model model_td <- td_logistic(t,X,Z)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.