exceedProb: Confidence intervals for the exceedance probability

Description Usage Arguments Value Examples

View source: R/ep.R

Description

This function obtains confidence intervals for exceedance probability

Usage

1
2
exceedProb(cutoff, theta_hat, sd_hat, alpha, d, n, m, interval = c(-100,
  100), lower_tail = FALSE)

Arguments

cutoff

Cutoff values (scalar or vector)

theta_hat

Point estimate for the parameter of interest

sd_hat

Estimated standard deviation for the parameter of interest (Note: not the standard error)

alpha

Significance level

d

Number of parameters in the general linear model

n

Number of observations in the initial study

m

Number of observations in the replication study

interval

Interval within which to search for roots

lower_tail

If TRUE, reports lower tail probabilities

Value

ep Exceedance probability with confidence intervals

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
library(exceedProb)

# Sample mean -------------------------------------------------------
n <- 100
x <- rnorm(n = n)

theta_hat <- mean(x)
sd_hat <- sd(x)

cutoff <- seq(from = theta_hat - 0.5, to = theta_hat + 0.5, by = 0.1)

exceedProb(cutoff = cutoff, 
           theta_hat = theta_hat, 
           sd_hat = sd_hat, 
           alpha = 0.05, 
           d = 1,
           n = n,
           m = n)

# Linear regression -------------------------------------------------
n <- 100
beta <- c(1, 2)
x <-runif(n = n, min = 0, max = 10)
y <- rnorm(n = n, mean = cbind(1, x) %*% beta, sd = 1)

j <- 2
fit <- lm(y ~ x)
theta_hat <- coef(fit)[j]
sd_hat <- sqrt(n * vcov(fit)[j, j])

cutoff <- seq(from = theta_hat - 0.5, to = theta_hat + 0.5, by = 0.1)

exceedProb(cutoff = cutoff, 
           theta_hat = theta_hat, 
           sd_hat = sd_hat, 
           alpha = 0.05, 
           d = length(beta),
           n = n,
           m = n)

exceedProb documentation built on Aug. 27, 2019, 9:02 a.m.