Nothing
test_DIFtree <- function(items=NULL,
DIFvars=NULL,
dset=NULL,
na.rm=TRUE,
model=NULL,
p.par=NULL,
modelType=NULL,
alpha=0.1,
estimation_param=NULL){
# This is an internal function that is not intended to be called by users.
# It is nevertheless exported so that it can be run in the parallelization
# workers. However, the function is not documented in the manual.
#' builds a raschtree using the raschtree or rstree function of the
#' psychotree Package.
#' @param items a numeric vector containing the index numbers of the items in
#' dset that are used to fit the model
#' @param DIFvars a vector or a data.frame containing the external variable(s)
#' to test for differential item functioning
#' @param dset a data.frame containing the data
#' @param na.rm a boolean value. If TRUE, all cases with any NA are removed
#' (na.omit). If FALSE, only cases with full NA responses are removed
#' @param model on object of a fit Rasch model, estimated with the packages
#' 'eRm' (classes 'RM', 'PCM' or 'RSM'), 'psychotools' (classes raschmodel,
#' 'pcmodel' or 'rsmodel') or 'pairwise' (class 'pers'), matching the value of
#' modelType. If 'model' is provided, this model is used. If NULL, a model is
#' fit using 'dset' and 'items'.
#' @param p.par a person parameter object matching the class of 'model'. If
#' NULL, the person parameters will be estimated.
#' @param modelType a character value defining the rasch model to fit.
#' Possible values: "RM", "PCM", "RSM".
#' @param alpha a numeric value for the alpha level. Will be ignored if
#' use.pval is FALSE
#' @param estimation_param options for parameter estimation using
#' \link{estimation_control}
#' @return if none of the p-values is significant, a list containing
#' 3 elements is returned: the item combination that was tested, a list of
#' the class the model was estimated with (depending on modelType and
#' estimation_param$est) with the fit model and a list with a person
#' parameter object (depending on estimation_param$est). If there is at
#' least one item with a significant p-value, NULL is returned.
#' @export
#' @keywords internal
# This function implements one of the tests that are executed via the 'tests'
# argument of the exhaustive_tests() function. It is an internal function, a
# call by the user is not indicated. It is nevertheless exported in order to
# work in parallelization. However, it is not included in the package
# documentation (roxygen2 keyword 'internal').
if (inherits(items, "list")){
model <- items[[2]]
p.par <- items[[3]]
items <- items[[1]]
}
ds_test <- dset[, items]
if (is.null(model)){
if (na.rm==TRUE){ds_test<- stats::na.omit(ds_test)
} else{ds_test <- ds_test[rowSums(is.na(ds_test)) < ncol(ds_test)-1, ]}
#try(suppressWarnings({
# model <- get(modelType)(ds_test, se=TRUE)
#}), silent=TRUE)
model <- fit_rasch(X=ds_test, modelType=modelType,
estimation_param=estimation_param)
}
if (!is.null(model)){
ds_DIF <- merge(ds_test, DIFvars, by=0)
ds_DIF$Row.names <- NULL
ds_DIF$rasch <- as.matrix(ds_DIF[ , seq_len(length(items))])
ds_DIF <- ds_DIF[ , -(seq_len(length(items)))]
if (modelType=="RM"){
try(suppressWarnings({
DIF_tree <- psychotree::raschtree(rasch ~., data=ds_DIF)}), silent=TRUE)
}
if (modelType=="RSM"){
try(suppressWarnings({
DIF_tree <- psychotree::rstree(rasch ~., data=ds_DIF)}), silent=TRUE)
}
if (modelType=="PCM"){
try(suppressWarnings({
DIF_tree <- psychotree::pctree(rasch ~., data=ds_DIF)}), silent=TRUE)
}
}
if (exists("DIF_tree")==TRUE & !is.null(model)){
if (length(DIF_tree)==1){
return(list(items, model, p.par))
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.