Nothing
test_itemfit<- function(items=NULL,
dset=NULL,
na.rm=TRUE,
control,
modelType=NULL,
model=NULL,
p.par=NULL,
alpha=0.1,
bonf=FALSE,
estimation_param=NULL){
# This is an internal function that is not intended to be called by users.
# It is nevertheless exported so that it can be run in the parallelization
# workers. However, the function is not documented in the manual.
#' checks the itemfit indices of a rasch model using the itemfit() function
#' of eRm.
#' @param items a numeric vector containing the index numbers of the items
#' in dset that are used to fit the model
#' @param dset a data.frame containing the data
#' @param na.rm a boolean value. If TRUE, all cases with any NA are removed
#' (na.omit). If FALSE, only cases with full NA responses are removed
#' @param control list object with options from \link{itemfit_control}
#' @param model on object of a fit Rasch model, estimated with the packages
#' 'eRm' (classes 'RM', 'PCM' or 'RSM'), 'psychotools' (classes raschmodel,
#' 'pcmodel' or 'rsmodel') or 'pairwise' (class 'pers'), matching the value of
#' modelType. If 'model' is provided, this model is used. If NULL, a model is
#' fit using 'dset' and 'items'.
#' @param p.par a person parameter object matching the class of 'model'. If
#' NULL, the person parameters will be estimated.
#' @param modelType a character value defining the rasch model to fit.
#' Possible values: "RM", "PCM", "RSM".
#' @param alpha a numeric value for the alpha level. Will be ignored if
#' use.pval is FALSE
#' @param bonf a boolean value whether to use a Bonferroni correction. Will
#' be ignored if use.pval is FALSE
#' @param estimation_param options for parameter estimation using
#' \link{estimation_control}
#' @return if all fit indices meet the given criteria, a list containing
#' 3 elements is returned: the item combination that was tested, a list of
#' the class the model was estimated with (depending on modelType and
#' estimation_param$est) with the fit model and a list with a person
#' parameter object (depending on estimation_param$est). If at least one
#' item's fit indices do not meet the given criteria, NULL is returned.
#' @export
#' @keywords internal
# This function implements one of the tests that are executed via the 'tests'
# argument of the exhaustive_tests() function. It is an internal function, a
# call by the user is not indicated. It is nevertheless exported in order to
# work in parallelization. However, it is not included in the package
# documentation (roxygen2 keyword 'internal').
if (inherits(items, "list")){
model <- items[[2]]
p.par <- items[[3]]
items <- items[[1]]
}
if (bonf==TRUE){local_alpha <- alpha/length(items)} else{local_alpha <- alpha}
if (is.null(model)){
ds_test <- dset[items]
if (na.rm==TRUE){ds_test<- stats::na.omit(ds_test)
} else{ds_test <- ds_test[rowSums(is.na(ds_test)) < ncol(ds_test)-1, ]}
model <- fit_rasch(X=ds_test, modelType=modelType,
estimation_param=estimation_param)
}
check <- FALSE
### get person parameter object if not already existing
if (!is.null(model) & is.null(p.par)){
if (estimation_param$est=="pairwise"){
p.par <- pairwise::pers(model)
} else if (estimation_param$est=="eRm"){
try(suppressWarnings({
p.par <- eRm::person.parameter(model)
}), silent=TRUE)
} else{ # psychotools
p.par <- ppar.psy(model)
}
}
### get fit indices
if (!is.null(p.par)){
if (estimation_param$est=="pairwise"){
ifit <- pairwise::pairwise.item.fit(p.par)
} else if (estimation_param$est=="eRm"){
ifit <- eRm::itemfit(p.par)
} else{ # psychotools
ifit <- p.par$itemfit
}
}
### compare fit indices with restrictions
if (exists("ifit")){
if (estimation_param$est=="pairwise" | estimation_param$est=="psychotools"){
if (!control$use.rel){
in.msq <- ifit$INFIT.MSQ
out.msq <- ifit$OUTFIT.MSQ
in.z <- ifit$INFIT.ZSTD
out.z <- ifit$OUTFIT.ZSTD
p <- ifit$p
} else{
in.msq <- ifit$INFIT.MSQ.REL
out.msq <- ifit$OUTFIT.MSQ.REL
in.z <- ifit$INFIT.ZSTD.REL
out.z <- ifit$i.outfitZ
}
} else{ # eRm
in.msq <- ifit$i.infitMSQ
out.msq <- ifit$i.outfitMSQ
in.z <- ifit$i.infitZ
out.z <- ifit$i.outfitZ
p <- stats::pchisq(ifit$i.fit, df=ifit$i.df-1,
lower.tail=FALSE)
# -1 is a correction for an error in eRm
}
check <- TRUE
if (control$use.pval==TRUE & min(p)<local_alpha){
check <- FALSE # check for p.value
}
if (control$msq==TRUE & (min(in.msq)<control$lowerMSQ | max(
in.msq)>control$upperMSQ)){
check <- FALSE # check for MSQ infit
}
if (control$zstd==TRUE & (min(in.z)<control$lowerZ | max(
in.z)>control$upperZ)){
check <- FALSE # check for standardised infit
}
if (control$outfits==TRUE){
if (control$msq==TRUE & (min(out.msq)<control$lowerMSQ | max(
out.msq)>control$upperMSQ)){
check <- FALSE # check for MSQ outfit
}
if (control$zstd==TRUE & (min(out.z)<control$lowerZ | max(
out.z)>control$upperZ)){
check <- FALSE # check for standardised outfit
}
}
}
if (check==TRUE){return(list(items, model, p.par))}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.