Nothing
test_mloef <- function(items=NULL,
dset=NULL,
na.rm=TRUE,
model=NULL,
p.par=NULL,
modelType=NULL,
splitcr="median",
alpha=0.1,
estimation_param=NULL){
# This is an internal function that is not intended to be called by users.
# It is nevertheless exported so that it can be run in the parallelization
# workers. However, the function is not documented in the manual.
#' runs Martin-Loef Test using the MLoef() function of eRm.
#' @param items a numeric vector containing the index numbers of the items in
#' dset that are used to fit the model
#' @param dset a data.frame containing the data
#' @param na.rm a boolean value. If TRUE, all cases with any NA are removed
#' (na.omit). If FALSE, only cases with full NA responses are removed
#' @param model on object of a fit Rasch model, estimated with the packages
#' 'eRm' (classes 'RM', 'PCM' or 'RSM'), 'psychotools' (classes raschmodel,
#' 'pcmodel' or 'rsmodel') or 'pairwise' (class 'pers'), matching the value of
#' modelType. If 'model' is provided, this model is used. If NULL, a model is
#' fit using 'dset' and 'items'.
#' @param p.par a person parameter object matching the class of 'model'. If
#' NULL, the person parameters will be estimated.
#' @param modelType a character value defining the rasch model to fit.
#' Possible values: "RM", "PCM", "RSM".
#' @param splitcr as defined by eRm::MLoef: Split criterion to define the
#' item groups. "median" and "mean" split items in two groups based on their
#' items' raw scores. splitcr can also be a vector of length k (where k
#' denotes the number of items) that takes two or more distinct values to
#' define groups used for the Martin-Löf Test.
#' @param alpha a numeric value for the alpha level. Will be ignored if
#' use.pval is FALSE
#' @param estimation_param options for parameter estimation using
#' \link{estimation_control}
#' @return if the p-value of the test is not significant, a list containing
#' 3 elements is returned: the item combination that was tested, a list of
#' the class the model was estimated with (depending on modelType and
#' estimation_param$est) with the fit model and a list with a person
#' parameter object (depending on estimation_param$est). If the test is
#' significant, NULL is returned.
#' @export
#' @keywords internal
# This function implements one of the tests that are executed via the 'tests'
# argument of the exhaustive_tests() function. It is an internal function, a
# call by the user is not indicated. It is nevertheless exported in order to
# work in parallelization. However, it is not included in the package
# documentation (roxygen2 keyword 'internal').
if (inherits(items, "list")){
model <- items[[2]]
p.par <- items[[3]]
items <- items[[1]]
}
if (is.null(model)){
ds_test <- dset[items]
if (na.rm==TRUE){ds_test<- stats::na.omit(ds_test)
} else{ds_test <- ds_test[rowSums(is.na(ds_test)) < ncol(ds_test)-1, ]}
#try(suppressWarnings({
# model <- get(modelType)(ds_test, se=TRUE)
#}), silent=TRUE)
model <- fit_rasch(X=ds_test, modelType=modelType,
estimation_param=estimation_param)
}
if (!is.null(model)){
if (estimation_param$est=="psychotools"){
try(suppressWarnings({
ml <- mloef.psy(model, modelType, splitcr, splitseed=
estimation_param$splitseed)
}), silent=TRUE)
} else if (estimation_param$est=="eRm"){
try(suppressWarnings({ml <- eRm::MLoef(model, splitcr=splitcr)
}), silent=TRUE)
}
}
if (exists("ml")==TRUE){
if (!is.null(ml)){
if (ml$p.value >=alpha){
return(list(items, model, p.par))
}
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.