Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, include=FALSE, eval=FALSE-----------------------------------------
# library(extraSuperpower)
## ----installation, eval=FALSE-------------------------------------------------
# install.packages('extraSuperpower')
## ----package loading----------------------------------------------------------
library(extraSuperpower)
## -----------------------------------------------------------------------------
## outcome mean in reference group at baseline is 10
## a control group and an intervention group will be compared over 3 timepoints
## all measurements are independent
refmean <- 10
Alevs <- 2
Blevs <- 3
fAeff <- 1.5
fBeff <- 0.8
## if you do not provide a list with names of factors and levels, factor names are to "fA" and "fB" and level names are set to 'letters[1:nlfA]' and 'letters[1:nlfB]'.
Alevelnames <- c("control", "intervention")
Blevelnames <- 1:Blevs
nameslist <- list("Group" = Alevelnames, "Time" = Blevelnames)
simple_twoway <- calculate_mean_matrix(refmean = refmean, nlfA = Alevs, nlfB = Blevs,
fAeffect = fAeff, fBeffect = fBeff,
label_list = nameslist)
## ----fig.asp=0.8, fig.width=8-------------------------------------------------
##labelling factors and their levels is convenient
simple_twoway
## ----fig.asp=0.8, fig.width=8-------------------------------------------------
simple_twoway_sdadjusted <- calculate_mean_matrix(refmean = refmean, nlfA = Alevs, nlfB = Blevs,
fAeffect = fAeff, fBeffect = fBeff,
sdproportional = FALSE, sdratio = 0.1,
label_list = nameslist)
simple_twoway_sdadjusted
## ----fig.asp=0.8, fig.width=8-------------------------------------------------
#intervention group is the second row in the means matrix, times 2 and 3 the 2nd and 3rd columns.
cellsinteraction <- c(2, 2, 2, 3)
cellsinteraction <- matrix(cellsinteraction, 2, 2)
interaction_twoway <- calculate_mean_matrix(refmean = refmean, nlfA = Alevs, nlfB = Blevs,
fAeffect = fAeff, fBeffect = fBeff,
groupswinteraction = cellsinteraction, interact = 0.7,
label_list = nameslist)
interaction_twoway
## ----fig.asp=0.8, fig.width=8-------------------------------------------------
#Let's suppose within subject correlation is 0.7
rho <- 0.7
interaction_twoway_timewithin <- calculate_mean_matrix(refmean = refmean, nlfA = Alevs, nlfB = Blevs,
fAeffect = fAeff, fBeffect = fBeff,
groupswinteraction = cellsinteraction, interact = 0.7,
rho = rho, withinf = "fB",
label_list = nameslist)
interaction_twoway_timewithin
## -----------------------------------------------------------------------------
iterations <- 50
set.seed(170824)
n <- seq(6, 12, 3)
indepmeasures_normal_sim <- simulate_twoway_nrange(matrices_obj = interaction_twoway,
nset = n, distribution = "normal", nsims = iterations)
length(indepmeasures_normal_sim)
length(n)
## -----------------------------------------------------------------------------
indepmeasures_skewed_sim <- simulate_twoway_nrange(matrices_obj = interaction_twoway,
nset = n, distribution = "skewed", skewness = 2,
nsims = iterations)
## ----normally distributed repeated measures simulation------------------------
repmeasures_normal_sim <- simulate_twoway_nrange(matrices_obj = interaction_twoway_timewithin,
nset = n, repeated_measurements = TRUE,
nsims = iterations)
## ----skewed repeated measures simulation--------------------------------------
repmeasures_skewed_sim <- simulate_twoway_nrange(matrices_obj = interaction_twoway_timewithin,
nset = n, repeated_measurements = TRUE,
distribution = "skewed", skewness=2,
nsims = iterations)
## ----fig.asp=0.8, fig.width=8-------------------------------------------------
test_power_overkn(indepmeasures_normal_sim)
## ----fig.asp=0.8, fig.width=8-------------------------------------------------
test_power_overkn(indepmeasures_skewed_sim)
## ----fig.asp=0.8, fig.width=8-------------------------------------------------
test_power_overkn(indepmeasures_skewed_sim, test = "rank")
## ----fig.asp=0.8, fig.width=8-------------------------------------------------
test_power_overkn(repmeasures_normal_sim)
## ----testing power repeated measures normally distributed simulation, fig.asp=0.8, fig.width=8, warning=FALSE, message=FALSE----
test_power_overkn(repmeasures_normal_sim, test = "rank")
## ----repeated measures skewed distribution power testing with ANOVA, fig.asp=0.8, fig.width=8----
test_power_overkn(repmeasures_skewed_sim)
## ----repeated measures skewed distribution power testing with rank, fig.asp=0.8, fig.width=8, warning=FALSE----
test_power_overkn(repmeasures_skewed_sim, test = "rank")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.