Nothing
#' Perform binary encoding of factor variables
#'
#' `step_encoding_binary()` creates a *specification* of a recipe step that will
#' perform binary encoding of factor variables.
#'
#' @inheritParams recipes::step_center
#' @inheritParams recipes::step_dummy
#' @param ... One or more selector functions to choose which variables are
#' affected by the step. See [recipes::selections()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param res A list containing levels of training variables is stored
#' here once this preprocessing step has be trained by [recipes::prep()].
#' @param columns A character string of variable names that will be populated
#' (eventually) by the `terms` argument.
#' @return An updated version of `recipe` with the new step added to the
#' sequence of existing steps (if any). For the `tidy` method, a tibble with
#' columns `terms` (the columns that will be affected) and `base`.
#' @export
#' @examples
#' library(recipes)
#' library(modeldata)
#'
#' data(ames)
#'
#' rec <- recipe(~ Land_Contour + Neighborhood, data = ames) %>%
#' step_encoding_binary(all_nominal_predictors()) %>%
#' prep()
#'
#' rec %>%
#' bake(new_data = NULL)
#'
#' tidy(rec, 1)
step_encoding_binary <-
function(recipe,
...,
role = NA,
trained = FALSE,
res = NULL,
columns = NULL,
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("encoding_binary")
) {
add_step(
recipe,
step_encoding_binary_new(
terms = enquos(...),
role = role,
trained = trained,
res = res,
columns = columns,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_encoding_binary_new <-
function(terms, role, trained, res, columns, keep_original_cols, skip, id) {
step(
subclass = "encoding_binary",
terms = terms,
role = role,
trained = trained,
res = res,
columns = columns,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
#' @export
prep.step_encoding_binary <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(
training[, col_names],
types = c("factor", "ordered", "unordered"),
)
values <- lapply(training[, col_names], encoding_binary_impl)
step_encoding_binary_new(
terms = x$terms,
role = x$role,
trained = TRUE,
res = values,
columns = col_names,
keep_original_cols = recipes::get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
encoding_binary_impl <- function(x) {
levels(x)
}
#' @export
bake.step_encoding_binary <- function(object, new_data, ...) {
col_names <- object$columns
# for backward compat
for (col_name in col_names) {
new_cols <- encoding_binary_apply(
new_data[[col_name]],
object$res[[col_name]]
)
colnames(new_cols) <- paste(col_name, colnames(new_cols), sep = "_")
new_cols <- check_name(new_cols, new_data, object, names(new_cols))
new_data <- vctrs::vec_cbind(new_data, new_cols)
}
new_data <- remove_original_cols(new_data, object, col_names)
new_data
}
encoding_binary_apply <- function(x, lvls) {
n_cols <- ceiling(log2(length(lvls))) + 1
if (!identical(levels(x), lvls)) {
rlang::abort("levels doesn't match")
}
res <- t(sapply(as.integer(x), function(x){as.integer(intToBits(x))}))
res <- res[, seq_len(n_cols)]
colnames(res) <- 2 ^ (seq_len(n_cols) - 1)
dplyr::as_tibble(res)
}
#' @export
print.step_encoding_binary <-
function(x, width = max(20, options()$width - 31), ...) {
cat("Binary Encoding on ", sep = "")
printer(x$columns, x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_encoding_binary
#' @usage NULL
#' @export
tidy.step_encoding_binary <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$res),
value = lengths(x$res)
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
value = NA_real_
)
}
res$id <- x$id
res
}
#' @rdname required_pkgs.extrasteps
#' @export
required_pkgs.step_encoding_binary <- function(x, ...) {
c("extrasteps")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.