Nothing
#' Perform Min Max Scaling
#'
#' `step_minmax()` creates a *specification* of a recipe step that will perform
#' Min Max scaling.
#'
#' @inheritParams recipes::step_center
#' @param ... One or more selector functions to choose which variables are
#' affected by the step. See [recipes::selections()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param res A list containing min and max of training variables is stored here
#' once this preprocessing step has be trained by [recipes::prep()].
#' @param columns A character string of variable names that will be populated
#' (eventually) by the `terms` argument.
#' @return An updated version of `recipe` with the new step added to the
#' sequence of existing steps (if any). For the `tidy` method, a tibble with
#' columns `terms` (the columns that will be affected) and `base`.
#' @export
#' @examples
#' library(recipes)
#'
#' rec <- recipe(~., data = mtcars) %>%
#' step_minmax(all_predictors()) %>%
#' prep()
#'
#' rec %>%
#' bake(new_data = NULL)
#'
#' tidy(rec, 1)
step_minmax <-
function(recipe,
...,
role = NA,
trained = FALSE,
res = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("minmax")
) {
add_step(
recipe,
step_minmax_new(
terms = enquos(...),
role = role,
trained = trained,
res = res,
columns = columns,
skip = skip,
id = id
)
)
}
step_minmax_new <-
function(terms, role, trained, res, columns, skip, id) {
step(
subclass = "minmax",
terms = terms,
role = role,
trained = trained,
res = res,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_minmax <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
values <- lapply(training[, col_names], minmax_impl)
step_minmax_new(
terms = x$terms,
role = x$role,
trained = TRUE,
res = values,
columns = col_names,
skip = x$skip,
id = x$id
)
}
minmax_impl <- function(x) {
list(min = min(x, na.rm = TRUE), max = max(x, na.rm = TRUE))
}
#' @export
bake.step_minmax <- function(object, new_data, ...) {
col_names <- object$columns
# for backward compat
for (col_name in col_names) {
new_data[[col_name]] <- minmax_apply(
new_data[[col_name]],
object$res[[col_name]]
)
}
new_data
}
minmax_apply <- function(x, res) {
(x - res$min) / (res$max - res$min)
}
#' @export
print.step_minmax <-
function(x, width = max(20, options()$width - 31), ...) {
cat("Min Max scaling on ", sep = "")
printer(x$columns, x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_minmax
#' @usage NULL
#' @export
tidy.step_minmax <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = c(names(x$res), names(x$res)),
statistic = rep(c("min", "max"), each = length(x$res)),
value = unname(c(map_dbl(x$res, "min"), map_dbl(x$res, "max")))
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
statistic = NA_character_,
value = NA_real_
)
}
res$id <- x$id
res
}
#' @rdname required_pkgs.extrasteps
#' @export
required_pkgs.step_minmax <- function(x, ...) {
c("extrasteps")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.