Nothing
#' Perform Robust Scaling
#'
#' `step_robust()` creates a *specification* of a recipe step that will perform
#' Robust scaling.
#'
#' @inheritParams recipes::step_center
#' @param ... One or more selector functions to choose which variables are
#' affected by the step. See [recipes::selections()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param range A numeric vector with 2 values denoting the lower and upper
#' quantile that is used for scaling. Defaults to `c(0.25, 0.75)`.
#' @param res A list containing the 3 quantiles of training variables is stored
#' here once this preprocessing step has be trained by [recipes::prep()].
#' @param columns A character string of variable names that will be populated
#' (eventually) by the `terms` argument.
#' @return An updated version of `recipe` with the new step added to the
#' sequence of existing steps (if any). For the `tidy` method, a tibble with
#' columns `terms` (the columns that will be affected) and `base`.
#'
#' @details
#'
#' The scaling performed by this step is done using the following transformation
#'
#' \deqn{x_new = (x - Q2(x)) / (Q3(x) - Q1(x))}
#'
#' where `Q2(x)` is the median, `Q3(x)` is the upper quantile (defaults to 0.75)
#' and `Q1(x)` is the lower quantile (defaults to 0.25). The upper and lower
#' quantiles can be changed with the `range` argument.
#'
#' @export
#' @examples
#' library(recipes)
#'
#' rec <- recipe(~., data = mtcars) %>%
#' step_robust(all_predictors()) %>%
#' prep()
#'
#' rec %>%
#' bake(new_data = NULL)
#'
#' tidy(rec, 1)
#'
#' rec <- recipe(~., data = mtcars) %>%
#' step_robust(all_predictors(), range = c(0.1, 0.9)) %>%
#' prep()
#'
#' rec %>%
#' bake(new_data = NULL)
#'
#' tidy(rec, 1)
step_robust <-
function(recipe,
...,
role = NA,
trained = FALSE,
range = c(0.25, 0.75),
res = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("robust")
) {
add_step(
recipe,
step_robust_new(
terms = enquos(...),
role = role,
trained = trained,
range = range,
res = res,
columns = columns,
skip = skip,
id = id
)
)
}
step_robust_new <-
function(terms, role, trained, range, res, columns, skip, id) {
step(
subclass = "robust",
terms = terms,
role = role,
trained = trained,
range = range,
res = res,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_robust <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
values <- lapply(training[, col_names], robust_impl, x$range)
step_robust_new(
terms = x$terms,
role = x$role,
trained = TRUE,
range = x$range,
res = values,
columns = col_names,
skip = x$skip,
id = x$id
)
}
robust_impl <- function(x, range) {
probs <- c(range[1], 0.5, range[2])
quantiles <- stats::quantile(x, probs = probs, na.rm = TRUE)
list(lower = quantiles[1], median = quantiles[2], upper = quantiles[3])
}
#' @export
bake.step_robust <- function(object, new_data, ...) {
col_names <- object$columns
# for backward compat
for (col_name in col_names) {
new_data[[col_name]] <- robust_apply(
new_data[[col_name]],
object$res[[col_name]]
)
}
new_data
}
robust_apply <- function(x, res) {
(x - res$median) / (res$upper - res$lower)
}
#' @export
print.step_robust <-
function(x, width = max(20, options()$width - 31), ...) {
cat("Robust scaling on ", sep = "")
printer(x$columns, x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_robust
#' @usage NULL
#' @export
tidy.step_robust <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = rep(names(x$res), each = 3),
statistic = rep(c("lower", "median", "higher"), length(x$res)),
value = unname(unlist(x$res)) %||% numeric()
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
statistic = NA_character_,
value = NA_real_
)
}
res$id <- x$id
res
}
#' @rdname required_pkgs.extrasteps
#' @export
required_pkgs.step_robust <- function(x, ...) {
c("extrasteps")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.