Description Usage Arguments Value Author(s) References Examples
A collection and description of functions to compute statistics of
a true ARMA time series process.
The functions are:
armaRoots | Roots of the characteristic ARMA polynomial, |
armaTrueacf | True autocorrelation function of an ARMA process. |
1 2 3 | armaRoots(coefficients, n.plot = 400, digits = 4, ...)
armaTrueacf(model, lag.max = 20, type = c("correlation", "partial", "both"),
doplot = TRUE)
|
coefficients |
[armaRoots] - |
digits |
[armaRoots] - |
doplot |
[armaRoots] - |
lag.max |
[armaTrueacf] - |
model |
[armaTrueacf] - |
n |
[armaSim] - |
n.plot |
[armaRoots] - |
type |
[armaTrueacf] - |
... |
additional arguments to be passed. |
armaRoots
returns a three column data frame with the real, the imaginary part
and the radius of the roots. The number of rows corresponds
to the coefficients.
armaTrueacf
returns a two column data frame with the lag and the correlation
function.
M. Plummer and B.D. Ripley for ar
functions and code,
B.D. Ripley for arima
and ARMAacf
functions and code,
C. Fraley and F. Leisch for fracdiff
functions and code, and
Diethelm Wuertz for the Rmetrics R-port.
Brockwell, P.J. and Davis, R.A. (1996); Introduction to Time Series and Forecasting, Second Edition, Springer, New York.
Durbin, J. and Koopman, S.J. (2001); Time Series Analysis by State Space Methods, Oxford University Press.
Gardner, G, Harvey, A.C., Phillips, G.D.A. (1980); Algorithm AS154. An algorithm for exact maximum likelihood estimation of autoregressive-moving average models by means of Kalman filtering, Applied Statistics, 29, 311–322.
Hannan E.J. and Rissanen J. (1982); Recursive Estimation of Mixed Autoregressive-Moving Average Order. Biometrika 69, 81–94.
Harvey, A.C. (1993); Time Series Models, 2nd Edition, Harvester Wheatsheaf, Sections 3.3 and 4.4.
Jones, R.H. (1980); Maximum likelihood fitting of ARMA models to time series with missing observations, Technometrics, 20, 389–395.
Percival, D.P. and Walden, A.T. (1998); Spectral Analysis for Physical Applications. Cambridge University Press.
Whittle, P. (1963); On the fitting of multivariate autoregressions and the approximate canonical factorization of a spectral matrix. Biometrika 40, 129–134.
Haslett J. and Raftery A.E. (1989); Space-time Modelling with Long-memory Dependence: Assessing Ireland's Wind Power Resource (with Discussion), Applied Statistics 38, 1–50.
1 2 3 4 5 6 7 8 9 10 11 | ## armaRoots -
# Calculate and plot the roots of an ARMA process:
par(mfrow = c(2, 2), cex = 0.7)
coefficients = c(-0.5, 0.9, -0.1, -0.5)
armaRoots(coefficients)
## armaTrueacf -
model = list(ar = c(0.3, +0.3), ma = 0.1)
armaTrueacf(model)
model = list(ar = c(0.3, -0.3), ma = 0.1)
armaTrueacf(model)
|
Loading required package: timeDate
Loading required package: timeSeries
Loading required package: fBasics
re im dist
1 1.0291 0.7284 1.2608
2 -1.0000 0.0000 1.0000
3 -1.2582 0.0000 1.2582
4 1.0291 -0.7284 1.2608
lag acf
0 0 1.000000000
1 1 0.525423729
2 2 0.457627119
3 3 0.294915254
4 4 0.225762712
5 5 0.156203390
6 6 0.114589831
7 7 0.081237966
8 8 0.058748339
9 9 0.041995892
10 10 0.030223269
11 11 0.021665748
12 12 0.015566705
13 13 0.011169736
14 14 0.008020932
15 15 0.005757201
16 16 0.004133440
17 17 0.002967192
18 18 0.002130190
19 19 0.001529215
20 20 0.001097821
lag acf
0 0 1.000000e+00
1 1 2.935178e-01
2 2 -2.119446e-01
3 3 -1.516387e-01
4 4 1.809177e-02
5 5 5.091916e-02
6 6 9.848216e-03
7 7 -1.232128e-02
8 8 -6.650849e-03
9 9 1.701130e-03
10 10 2.505594e-03
11 11 2.413392e-04
12 12 -6.792764e-04
13 13 -2.761847e-04
14 14 1.209275e-04
15 15 1.191337e-04
16 16 -5.381576e-07
17 17 -3.590154e-05
18 18 -1.060902e-05
19 19 7.587758e-06
20 20 5.459032e-06
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.