Fitting (hierarchical) hidden Markov models to financial data via maximum likelihood estimation. See Oelschläger, L. and Adam, T. "Detecting Bearish and Bullish Markets in Financial Time Series Using Hierarchical Hidden Markov Models" (2021, Statistical Modelling) <doi:10.1177/1471082X211034048> for a reference on the method. A user guide is provided by the accompanying software paper "fHMM: Hidden Markov Models for Financial Time Series in R", Oelschläger, L., Adam, T., and Michels, R. (2024, Journal of Statistical Software) <doi:10.18637/jss.v109.i09>.
Package details |
|
---|---|
Author | Lennart Oelschläger [aut, cre] (<https://orcid.org/0000-0001-5421-9313>), Timo Adam [aut] (<https://orcid.org/0000-0001-9079-3259>), Rouven Michels [aut] (<https://orcid.org/0000-0002-5433-6197>) |
Maintainer | Lennart Oelschläger <oelschlaeger.lennart@gmail.com> |
License | GPL-3 |
Version | 1.4.2 |
URL | https://loelschlaeger.de/fHMM/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.