Nothing
#' @title Factor Model Variance Inflaction Factor Values
#'
#' @description Calculate and plot the Factor Model Variance Inflaction Factor Values for a fitted model.
#' A VIF for a single explanatory variable (style factor) is obtained using the time series of R-squared values obtained from
#' the regression of that variable against all other explanatory variables.
#' So, at least 2 explanatory variables are required in \code{exposure.vars} of fitted model to find the VIF.
#'
#' @importFrom stats lm
#' @importFrom xts xts
#'
#' @param ffmObj an object of class \code{ffm} produced by \code{fitFfm}
#' @param digits an integer indicating the number of decimal places to be used for rounding. Default is 2.
#' @param isPrint logical. if \code{TRUE}, the time series of the computed factor model values is printed along with their mean values.
#' Else, only the mean values are printed. Default is \code{TRUE}.
#' @param isPlot logical. if \code{TRUE}, the time series of the output is plotted. Default is \code{TRUE}.
#' @param lwd line width relative to the default. Default is 2.
#' @param stripText.cex a number indicating the amount by which strip text in the plot(s) should be scaled relative to the default. 1=default, 1.5 is 50\% larger, 0.5 is 50\% smaller, etc.
#' @param axis.cex a number indicating the amount by which axis in the plot(s) should be scaled relative to the default. 1=default, 1.5 is 50\% larger, 0.5 is 50\% smaller, etc.
#' @param title logical. This argument is mainly used for the documentation purpose when you need a plot without any title.
#' If \code{TRUE}, the plots will have the main tiltle. default is \code{TRUE}.
#'
#' @param ... potentially further arguments passed.
#' @author Avinash Acharya
#'
#' @return \code{ffmRsq} returns the sample mean values and plots the time series of corresponding R squared values
#' and the Variance Inflation factors depending on the values of \code{rsq}, \code{rsqAdj} and \code{VIF}.
#' The time series of the output values are also printed if \code{isPrint} is \code{TRUE}
#'
#' @examples
#'\donttest{
#' library(PCRA)
#' # load data
#'data(stocksCRSP)
#'data(factorsSPGMI)
#'dateRange <- c("2006-01-31","2010-12-31")
#'stockItems <- c("Date", "TickerLast", "CapGroupLast", "Return",
#' "Ret13WkBill","MktIndexCRSP","Sector")
#' factorItems <- c("BP","Beta60M","PM12M1M")
#'stocks_factors <- selectCRSPandSPGMI("monthly", dateRange = dateRange,
#'stockItems = stockItems, factorItems = factorItems, outputType ="data.table")
#'
#'
#' # fit a fundamental factor model with style variables BP and LogMktCap
#'
#'fundamental_model <- fitFfm(data = stocks_factors,
#' asset.var = "TickerLast",
#' ret.var = "Return",
#' date.var = "Date",
#' exposure.vars = c("BP", "PM12M1M")
#' )
#'
#' #Plot and print the time series of VIF values
#' vif(fundamental_model,isPrint=TRUE)
#' }
#' @export
vif <- function(ffmObj, digits=2, isPrint=TRUE, isPlot =TRUE, lwd =2,stripText.cex =1,axis.cex=1, title = TRUE, ...)
{
# check input object validity
if (!inherits(ffmObj, c("tsfm", "sfm", "ffm")))
stop("Invalid argument: Object should be of class 'tsfm', 'sfm' or 'ffm'.")
n.assets <- length(ffmObj$asset.names)
exposure.vars= ffmObj$exposure.vars
which.numeric <- sapply(ffmObj$data[,exposure.vars,drop=FALSE], is.numeric)
exposures.num <- exposure.vars[which.numeric]
d_ <- ffmObj$date.var
if(length(exposures.num) < 2)
{
stop(" At least 2 continous variables required to find VIF")
}
object = ffmObj$data[exposures.num]
object <- as.matrix(object)
ncols <- dim(object)[2]
time.periods = length(ffmObj$time.periods)
ffmObj$time.periods <- sort(ffmObj$time.periods)
vifs = matrix(0, nrow = time.periods, ncol = ncols)
for(i in 1:time.periods)
{
# vifs[i,1:ncols] = sapply(seq(ncols), function(x)
# 1/(1 - summary(lm(object[((i-1)*n.assets+1) : (i*n.assets), x] ~
# object[((i-1)*n.assets+1) :(i*n.assets), -x]))$r.squared))
rowsToConsider <- which(ffmObj$data[[d_]] == ffmObj$time.periods[i])
vifs[i,1:ncols] = sapply(seq(ncols), function(x)
1/(1-summary(lm(object[rowsToConsider, x] ~ object[rowsToConsider, -x]))$r.squared))
}
colnames(vifs) <- dimnames(object)[[2]]
vifs.xts = xts(vifs, order.by = ffmObj$time.periods)
vifs.mean = round(colMeans(vifs.xts),digits = digits)
if(isPlot)
{
if(title) title.vif = "Factor Model VIF Values" else title.vif = " "
#Assuming the number of continous variables in exposure.vars is less than 6,layout=c(1,ncols) is defined.
tsPlotMP(0.01*vifs.xts,stripLeft = TRUE, layout = c(1,ncols), scaleType = "same",stripText.cex = stripText.cex,
axis.cex = axis.cex,color = "blue", yname = "", lwd = lwd, main =title.vif, type = "h")
}
vifs.xts = round(vifs.xts,digits = digits)
out<- list("Mean.VIF" = vifs.mean)
ret<- list("VIF" = vifs.xts)
if(isPrint)
{
print(c(out, ret))
}else{
print(out)
invisible(c(out, ret))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.