R/Random.R

Defines functions .fam_runif fam_runif ..fam_rnorm .fam_rnorm fam_rnorm ..fam_sample .start_random_number_stream

.start_random_number_stream <- function(seed) {
  if (is.null(seed)) {
    return(NULL)
  }

  r <- methods::new("rstream.runif", seed = seed)

  return(r)
}



..fam_sample <- function(
    x, 
    size, 
    replace, 
    seed = NULL, 
    rstream_object = NULL) {
  # Create a random generator stream to avoid touching seeds globally.

  if (is.null(seed) && is.null(rstream_object)) {
    ..error_reached_unreachable_code(
      "..fam_sample: seed and rstream_object cannot both be NULL")
  }

  if (!is.null(seed) && is.null(rstream_object)) {
    rstream_object <- .start_random_number_stream(seed = seed)
  }

  if (!is(rstream_object, "rstream.runif")) {
    ..error_reached_unreachable_code(
      "..fam_sample: rstream_object is not an rstream.runif object.")
  }

  # Determine the number of random values to generate. When samples are
  # replaced, "size" is sufficient. Otherwise we need to draw a number of random
  # values up to x.
  n_random_values <- ifelse(replace, size, length(x))

  # Obtain random values from the interval [0, 1].
  random_values <- rstream::rstream.sample(rstream_object, n_random_values)

  if (replace) {
    # Generate sample indices.
    x_indices <- ceiling(random_values * length(x))

    # Replace index 0, if present.
    x_indices[x_indices == 0] <- 1
  } else {
    # Create sample indices by ranking indices.
    x_indices <- data.table::frank(random_values, ties.method = "first")

    # Select the first x_indices (up to size)
    x_indices <- head(x_indices, n = size)
  }

  # Return sampled values.
  return(x[x_indices])
}



fam_rnorm <- function(
    n,
    mean = 0.0, 
    sd = 1.0, 
    seed = NULL, 
    rstream_object = NULL) {
  # Based on Marsaglia polar method.

  if (is.null(seed) && is.null(rstream_object)) {
    return(stats::rnorm(n = n, mean = mean, sd = sd))
  }

  return(.fam_rnorm(
    n = n, 
    mean = mean, 
    sd = sd, 
    seed = seed, 
    rstream_object = rstream_object))
}



.fam_rnorm <- function(
    n,
    mean = 0.0, 
    sd = 1.0, 
    seed = NULL,
    rstream_object = NULL) {
  # Based on Marsaglia polar method.

  if (is.null(seed) && is.null(rstream_object)) {
    ..error_reached_unreachable_code(
      "..fam_rnorm: seed and rstream_object cannot both be NULL")
  }

  if (!is.null(seed) && is.null(rstream_object)) {
    rstream_object <- .start_random_number_stream(seed = seed)
  }

  if (!is(rstream_object, "rstream.runif")) {
    ..error_reached_unreachable_code(
      "..fam_rnorm: rstream_object is not an rstream.runif object.")
  }

  x <- sapply(
    seq_len(n),
    ..fam_rnorm, 
    rstream_object = rstream_object)

  return(mean + sd * x)
}


..fam_rnorm <- function(ii, rstream_object) {
  # Based on Marsaglia polar method.

  while (TRUE) {
    x_1 <- rstream::rstream.sample(rstream_object, 1L) * 2.0 - 1.0
    x_2 <- rstream::rstream.sample(rstream_object, 1L) * 2.0 - 1.0

    s <- x_1^2 + x_2^2

    if (s < 1) break
  }

  if (s == 0) return(0)

  return(x_1 * sqrt(-2.0 * log(s) / s))
}



fam_runif <- function(
    n, 
    min = 0.0, 
    max = 1.0, 
    seed = NULL, 
    rstream_object = NULL) {
  
  if (is.null(seed) && is.null(rstream_object)) {
    return(stats::runif(
      n = n, 
      min = min, 
      max = max))
  }

  return(.fam_runif(
    n = n, 
    min = min, 
    max = max, 
    seed = seed,
    rstream_object = rstream_object))
}



.fam_runif <- function(
    n, 
    min = 0.0, 
    max = 1.0, 
    seed = NULL, 
    rstream_object = NULL) {
  if (is.null(seed) && is.null(rstream_object)) {
    ..error_reached_unreachable_code(
      "..fam_runif: seed and rstream_object cannot both be NULL")
  }

  if (!is.null(seed) && is.null(rstream_object)) {
    rstream_object <- .start_random_number_stream(seed = seed)
  }

  if (!is(rstream_object, "rstream.runif")) {
    ..error_reached_unreachable_code(
      "..fam_runif: rstream_object is not an rstream.runif object.")
  }

  # Create uniformly sampled data.
  x <- rstream::rstream.sample(rstream_object, n)

  return(min + x * (max - min))
}

Try the familiar package in your browser

Any scripts or data that you put into this service are public.

familiar documentation built on Sept. 30, 2024, 9:18 a.m.