Nothing
## ----setup, echo = FALSE, eval = FALSE----------------------------------------
# knitr::opts_chunk$set(comment = "#>", warning=FALSE, message=FALSE)
# library(fastFMM)
# output: pdf_document
# # output: rmarkdown::html_vignette
## ----echo = FALSE-------------------------------------------------------------
# Thanks to Yihui Xie for providing this code
# # %\VignetteEngine{knitr::rmarkdown}
# %\VignetteEngine{rmarkdown::render}
library(knitr)
hook_output <- knit_hooks$get("output")
knit_hooks$set(output = function(x, options) {
lines <- options$output.lines
if (is.null(lines)) {
return(hook_output(x, options)) # pass to default hook
}
x <- unlist(strsplit(x, "\n"))
more <- "..."
if (length(lines)==1) { # first n lines
if (length(x) > lines) {
# truncate the output, but add ....
x <- c(head(x, lines), more)
}
} else {
x <- c(more, x[lines], more)
}
# paste these lines together
x <- paste(c(x, ""), collapse = "\n")
hook_output(x, options)
})
## ----eval=FALSE---------------------------------------------------------------
# library(devtools)
# install_github("gloewing/fastFMM")
## ----eval = FALSE-------------------------------------------------------------
# # install packages (will only install them for the first time)
# list.of.packages = c("lme4", "parallel", "cAIC4", "magrittr","dplyr",
# "mgcv", "MASS", "lsei", "refund","stringr", "Matrix", "mvtnorm",
# "arrangements", "progress", "ggplot2", "gridExtra", "here")
# new.packages = list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
# if(length(new.packages)){
# chooseCRANmirror(ind=75)
# install.packages(new.packages, dependencies = TRUE)
# }else{
# # load packages if already installed
# library(lme4)
# library(parallel)
# library(cAIC4)
# library(magrittr)
# library(dplyr)
# library(mgcv)
# library(MASS)
# library(lsei)
# library(refund)
# library(stringr)
# library(Matrix)
# library(mvtnorm)
# library(arrangements)
# library(progress)
# library(ggplot2)
# library(gridExtra)
# }
## -----------------------------------------------------------------------------
library(fastFMM) # load our package
## -----------------------------------------------------------------------------
dat <- read.csv("time_series.csv") # read in data
head(dat[,1:6])
## ----eval = FALSE-------------------------------------------------------------
# Y_mat <- dat[,-seq(1,3)]
# head(Y_mat[,1:5])
## ----eval = FALSE-------------------------------------------------------------
# dat <- data.frame(Y = Y_mat, dat[,seq(1,3)])
## ----eval = FALSE-------------------------------------------------------------
# mod <- fui(Y ~ treatment + # main effect of cue
# (1 | id), # random intercept
# data = dat)
## ----eval = FALSE-------------------------------------------------------------
# Y_mat <- dat[,-seq(1,3)]
# L <- ncol(Y_mat) # number of columns of functional outcome
#
# mod <- fui(Y ~ treatment + # main effect of cue
# (treatment | id), # random intercept
# data = dat,
# argvals = seq(from = 1, to = L, by = 3) # every 3rd data point
# )
## -----------------------------------------------------------------------------
Y_mat <- dat[,-seq(1,3)]
L <- ncol(Y_mat) # number of columns of functional outcome
# model 1: random slope model
mod1 <- fui(Y ~ treatment + # main effect of cue
(treatment | id), # random intercept
data = dat,
var = FALSE)
# model 2: random intercept model
mod2 <- fui(Y ~ treatment + # main effect of cue
(1 | id), # random intercept
data = dat,
var = FALSE)
# compare model fits
colMeans(mod1$aic)
colMeans(mod2$aic)
## ----eval = FALSE-------------------------------------------------------------
# mod <- fui(Y ~ treatment + # main effect of cue
# (treatment | id/trial), # random intercept
# data = dat,
# subj_ID = "id")
## -----------------------------------------------------------------------------
mod <- fui(Y ~ treatment + # main effect of cue
(1 | id), # random intercept
data = dat)
fui_plot <- plot_fui(mod)
## -----------------------------------------------------------------------------
align_time <- 1 # cue onset is at 2 seconds
sampling_Hz <- 15 # sampling rate
# plot titles: interpretation of beta coefficients
plot_names <- c("Intercept", "Mean Signal Difference: Cue1 - Cue0")
fui_plot <- plot_fui(mod, # model fit object
x_rescale = sampling_Hz, # rescale x-axis to sampling rate
align_x = align_time, # align to cue onset
title_names = plot_names,
xlab = "Time (s)",
num_row = 2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.