Nothing
#' Maximal Overlap Discrete Wavelet Transform (MODWT)
#'
#' This function calculates the wavelet and scaling coefficients of the
#' MODWT.
#'
#' @param X An (N x 1) matrix or a vector
#' @param wavelet Scaling filter name (see Details below) (string)
#' @param decomp_level Decomposition level (integer, 1 < decomp_level < N/2)
#' @return Wavelet and scaling coefficients (N x J+1)
#' (wavelet coefficients in first J columns of returned matrix)
#' @references
#'
#' M. Basta (2014), Additive Decomposition and Boundary Conditions in Wavelet-Based
#' Forecasting Approaches, Acta Oeconomica Pragensia, 2, pp. 48-70.
#'
#' Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
#' University Press.
#'
#' @details
#'
#' The argument `wavelet` can take one of the following values:
#'
#' `c("haar", "d1", "sym1",
#' "d2", "sym2", "d3", "sym3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11",
#' "sym4", "sym5", "sym6", "sym7", "sym8", "sym9", "sym10",
#' "coif1", "coif2", "coif3", "coif4", "coif5",
#' "la8", "la10", "la12", "la14", "la16", "la18", "la20",
#' "bl14", "bl18", "bl20",
#' "fk4", "fk6", "fk8", "fk14", "fk18", "fk22",
#' "mb4.2", "mb8.2", "mb8.3", "mb8.4", "mb10.3", "mb12.3", "mb14.3", "mb16.3", "mb18.3", "mb24.3", "mb32.3",
#' "beyl",
#' "vaid",
#' "han2.3", "han3.3", "han4.5", "han5.5"
#' )`
#'
#' @examples
#' N <- 1000 # number of time series points
#' J <- 4 # decomposition level
#' wavelet <- 'coif1' # wavelet filter
#' X <- matrix(rnorm(N),N,1)
#' W <- mo_dwt(X,wavelet,J)
#' @export
mo_dwt <- function(X,wavelet,decomp_level){
invalid_scaling_filters <- c("bior1.3", "bior1.5", "bior2.2", "bior2.4", "bior2.6", "bior2.8", "bior3.1", "bior3.3",
"bior3.5", "bior3.7", "bior3.9", "bior4.4", "bior5.5", "bior6.8",
"rbio1.3", "rbio1.5", "rbio2.2", "rbio2.4", "rbio2.6", "rbio2.8", "rbio3.1", "rbio3.3",
"rbio3.5", "rbio3.7", "rbio3.9", "rbio4.4", "rbio5.5", "rbio6.8",
"bior1.1", "rbio1.1", "b3spline")
if (wavelet %in% invalid_scaling_filters) {
stop(paste0(wavelet, " cannot be used with mo_dwt"))
}
X <- shape_check(X)
N = length(X)
# g = scaling_filter(wavelet)
# L = length(g)
J = decomp_level
# use periodic extension on time series in order to calculate wavelet and scaling
# coefficients at boundary of time series, i.e., the first ((2^J) - 1) * (L - 1) + 1
# time series observations
x = rbind(X,X) # periodic extension
rm(X)
# perform AT algorithm on extended time series
# preallocate space
v = matrix(0,2*N,J)
w = matrix(0,2*N,J)
for(j in seq(1,J)){
# calculate scaling coefficients
v[,j] = scaling_coefs(x,wavelet,j) # Eq. 14 in Basta [2014]
# calculate wavelet coefficients
w[,j] = wavelet_coefs(x,wavelet,j) # Eq. 13 in Basta [2014]
# scaling coefficients of previous step are used for calculating scaling
# and wavelet in next step
x = v[,j]
}
# combine wavelet and scaling coefficients in a single matrix and only store the
# last N observations
W = cbind(w[seq(N+1,2*N),], v[seq(N+1,2*N),J])
# mo_dwt <- W
return(W)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.