Nothing
## ---- include = FALSE,eval=FALSE----------------------------------------------
# knitr::opts_chunk$set(
# collapse = TRUE,
# comment = "#>",
# dev = 'png'
# )
# Sys.setenv(`_R_S3_METHOD_REGISTRATION_NOTE_OVERWRITES_` = "false")
## ----eval=FALSE---------------------------------------------------------------
# library(fcfdr)
## ----eval=FALSE---------------------------------------------------------------
# set.seed(1)
# n = 50000
# n1p = 500 # associated variants
# zp = c(rnorm(n1p, sd=5), rnorm(n-n1p, sd=1)) # z-scores
# p = 2*pnorm(-abs(zp)) # convert to p-values
# hist(p)
## ----eval=FALSE---------------------------------------------------------------
# mixture_comp1 <- function(x) rnorm(x, mean = -0.5, sd = 0.5)
# mixture_comp2 <- function(x) rnorm(x, mean = 2, sd = 1)
# n = length(p)
# z = runif(n)
#
# q <- c(mixture_comp1(n1p), mixture_comp2(n-n1p))
# hist(q)
## ---- fig.width = 6, fig.height = 5,eval=FALSE--------------------------------
# corr_plot(p, q)
## ---- fig.width = 6, fig.height = 5,eval=FALSE--------------------------------
# stratified_qqplot(data_frame = data.frame(p, q), prin_value_label = "p", cond_value_label = "q", thresholds = quantile(q)[-1])
## ----eval=FALSE---------------------------------------------------------------
# res <- flexible_cfdr(p, q, indep_index = seq(1, n, 1))
## ----eval=FALSE---------------------------------------------------------------
# str(res)
#
# p = res[[1]]$p
# q = res[[1]]$q
# v = res[[1]]$v
## ----eval=FALSE---------------------------------------------------------------
# pv_plot(p = p, q = q, v = v)
# log10pv_plot(p = p, q = q, v = v,
# axis_lim = c(0, 10)) # zoom in to interesting region
## ----eval=FALSE---------------------------------------------------------------
# hit = which(p.adjust(v, method = "BH") <= 0.05)
## ----eval=FALSE---------------------------------------------------------------
# hit_p = which(p.adjust(p, method = "BH") <= 0.05)
## ----eval=FALSE---------------------------------------------------------------
# # cFDR
# 1 - (length(intersect(hit,c(1:500)))/length(hit))
#
# # p-value
# 1 - (length(intersect(hit_p,c(1:500)))/length(hit_p))
## ----eval=FALSE---------------------------------------------------------------
# # number of extra true associations identified by flexible cFDR
# length(which(hit[!hit %in% hit_p] <= 500))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.