Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
load("../R/sysdata.rda")
## ----setup--------------------------------------------------------------------
library(fdacluster)
true_groups <- c(rep(1, 20), rep(2, 10))
## ---- eval=FALSE--------------------------------------------------------------
# out_manual <- fdakmeans(
# x = simulated30$x,
# y = simulated30$y,
# n_clusters = 2,
# seeds = c(1, 21),
# warping_class = "affine",
# centroid_type = "mean",
# metric = "l2",
# cluster_on_phase = FALSE,
# use_verbose = FALSE
# )
## -----------------------------------------------------------------------------
knitr::kable(table(out_manual$memberships, true_groups))
## ---- eval=FALSE--------------------------------------------------------------
# withr::with_seed(1234, {
# initial_seeds <- replicate(10, sample.int(30, 2, replace = FALSE), simplify = FALSE)
# outs_manual <- purrr::map(initial_seeds, \(.seeds) {
# fdakmeans(
# x = simulated30$x,
# y = simulated30$y,
# n_clusters = 2,
# seeds = .seeds,
# warping_class = "affine",
# centroid_type = "mean",
# metric = "l2",
# cluster_on_phase = FALSE,
# use_verbose = FALSE
# )
# })
# })
## -----------------------------------------------------------------------------
tibble::tibble(
Initialization = initial_seeds |>
purrr::map_chr(\(.seeds) paste(.seeds, collapse = ",")),
`Misclassification Rate (%)` = purrr::map_dbl(outs_manual, \(.clus) {
tbl <- table(.clus$memberships, true_groups)
round(min(tbl[1, 1] + tbl[2, 2], tbl[1, 2] + tbl[2, 1]) / 30 * 100, 2)
})
) |>
knitr::kable()
## ---- eval=FALSE--------------------------------------------------------------
# withr::with_seed(1234, {
# outs_kpp <- replicate(10, {
# fdakmeans(
# x = simulated30$x,
# y = simulated30$y,
# n_clusters = 2,
# seeding_strategy = "kmeans++",
# warping_class = "affine",
# centroid_type = "mean",
# metric = "l2",
# cluster_on_phase = FALSE,
# use_verbose = FALSE
# )
# }, simplify = FALSE)
# })
## -----------------------------------------------------------------------------
tibble::tibble(
Run = 1:10,
`Misclassification Rate (%)` = purrr::map_dbl(outs_kpp, \(.clus) {
tbl <- table(.clus$memberships, true_groups)
round(min(tbl[1, 1] + tbl[2, 2], tbl[1, 2] + tbl[2, 1]) / 30 * 100, 2)
})
) |>
knitr::kable()
## ---- eval=FALSE--------------------------------------------------------------
# withr::with_seed(1234, {
# outs_ekpp <- replicate(10, {
# fdakmeans(
# x = simulated30$x,
# y = simulated30$y,
# n_clusters = 2,
# seeding_strategy = "exhaustive-kmeans++",
# warping_class = "affine",
# centroid_type = "mean",
# metric = "l2",
# cluster_on_phase = FALSE,
# use_verbose = FALSE
# )
# }, simplify = FALSE)
# })
## -----------------------------------------------------------------------------
tibble::tibble(
Run = 1:10,
`Misclassification Rate (%)` = purrr::map_dbl(outs_ekpp, \(.clus) {
tbl <- table(.clus$memberships, true_groups)
round(min(tbl[1, 1] + tbl[2, 2], tbl[1, 2] + tbl[2, 1]) / 30 * 100, 2)
})
) |>
knitr::kable()
## ---- eval=FALSE--------------------------------------------------------------
# out <- fdakmeans(
# x = simulated30$x,
# y = simulated30$y,
# n_clusters = 2,
# seeding_strategy = "hclust",
# warping_class = "affine",
# centroid_type = "mean",
# metric = "l2",
# cluster_on_phase = FALSE,
# use_verbose = FALSE
# )
## -----------------------------------------------------------------------------
knitr::kable(table(out_hclust$memberships, true_groups))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.