jointFPCAh: Joint Vertical and Horizontal Functional Principal Component...

View source: R/jointfPCA.R

jointFPCAhR Documentation

Joint Vertical and Horizontal Functional Principal Component Analysis

Description

This function calculates amplitude and phase joint functional principal component analysis on aligned data using the SRVF framework using MFPCA and h representation

Usage

jointFPCAh(
  warp_data,
  var_exp = 0.99,
  id = round(length(warp_data$time)/2),
  C = NULL,
  ci = c(-1, 0, 1),
  srvf = TRUE,
  showplot = TRUE
)

Arguments

warp_data

fdawarp object from time_warping of aligned data

var_exp

compute no based on value percent variance explained (default: 0.99) will override no

id

integration point for f0 (default = midpoint)

C

balance value (default = NULL)

ci

geodesic standard deviations (default = c(-1,0,1))

srvf

use srvf (default = TRUE)

showplot

show plots of principal directions (default = T)

Value

Returns a list containing

q_pca

srvf principal directions

f_pca

f principal directions

latent

latent values

coef

coefficients

U

eigenvectors

mu_psi

mean psi function

mu_g

mean g function

id

point use for f(0)

C

optimized phase amplitude ratio

References

Srivastava, A., Wu, W., Kurtek, S., Klassen, E., Marron, J. S., May 2011. Registration of functional data using fisher-rao metric, arXiv:1103.3817v2.

Jung, S. L. a. S. (2016). "Combined Analysis of Amplitude and Phase Variations in Functional Data." arXiv:1603.01775.

Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.

Examples

jfpcah <- jointFPCAh(simu_warp)

fdasrvf documentation built on Oct. 5, 2024, 1:08 a.m.