jointFPCAh | R Documentation |
This function calculates amplitude and phase joint functional principal component analysis on aligned data using the SRVF framework using MFPCA and h representation
jointFPCAh(
warp_data,
var_exp = 0.99,
id = round(length(warp_data$time)/2),
C = NULL,
ci = c(-1, 0, 1),
srvf = TRUE,
showplot = TRUE
)
warp_data |
fdawarp object from time_warping of aligned data |
var_exp |
compute no based on value percent variance explained (default: 0.99)
will override |
id |
integration point for f0 (default = midpoint) |
C |
balance value (default = NULL) |
ci |
geodesic standard deviations (default = c(-1,0,1)) |
srvf |
use srvf (default = TRUE) |
showplot |
show plots of principal directions (default = T) |
Returns a list containing
q_pca |
srvf principal directions |
f_pca |
f principal directions |
latent |
latent values |
coef |
coefficients |
U |
eigenvectors |
mu_psi |
mean psi function |
mu_g |
mean g function |
id |
point use for f(0) |
C |
optimized phase amplitude ratio |
Srivastava, A., Wu, W., Kurtek, S., Klassen, E., Marron, J. S., May 2011. Registration of functional data using fisher-rao metric, arXiv:1103.3817v2.
Jung, S. L. a. S. (2016). "Combined Analysis of Amplitude and Phase Variations in Functional Data." arXiv:1603.01775.
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
jfpcah <- jointFPCAh(simu_warp)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.