shape_CI | R Documentation |
This function computes Confidence bounds for shapes using elastic metric
shape_CI(
beta,
a = 0.95,
no = 5,
Nsamp = 100,
mode = "O",
rotated = TRUE,
scale = TRUE,
lambda = 0,
parallel = TRUE
)
beta |
Array of sizes |
a |
confidence level (default = 0.95) |
no |
number of principal components (default = 5) |
Nsamp |
number of functions to generate (default = 100) |
mode |
Open ( |
rotated |
Optimize over rotation (default = |
scale |
scale curves to unit length (default = |
lambda |
A numeric value specifying the elasticity. Defaults to |
parallel |
enable parallel processing (default = T) |
Return shape confidence intervals
J. D. Tucker, J. R. Lewis, C. King, and S. Kurtek, “A Geometric Approach for Computing Tolerance Bounds for Elastic Functional Data,” Journal of Applied Statistics, 10.1080/02664763.2019.1645818, 2019.
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.